Abstract
A lot of feature vectors and sub-band signals are considered for Epileptic seizure classification. Unfortunately, not all the feature vectors and sub-band signals contribute to the final result. In view of this limitation, we propose a modified Differential Evolution Feature Selection algorithm (MDEFS), which searches the best feature vector subset and the sub-band signals to distinguish three groups of subjects (healthy, ictal and interictal). From the experiment results, it is observed that the bagging method based on the optimal feature subset (the standard deviation attribute in the delta sub-band signal, the time-lag attribute in the delta sub-band signal, fractal dimension in the alpha sub-band signal, the correlation dimension attribute in the alpha sub-band signal and the standard deviation attribute in the beta sub-band signal) selected by MDEFS results in highest classification accuracy of 98.67 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Leppik, I.: Contemporary Diagnosis and Management of the Patient with Epilepsy. Handbooks in Health Care, Newton (2000)
Fisher, R., Van Boas, W.E., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J.: Special article epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)
Shoeb, A.: Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment, Massachusetts (2009)
Samanwoy, G.-D., Adeli, H., Dadmehr, N.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 512–518 (2008)
Ocak, H.: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 88, 1858–1867 (2008)
Shoeb, A., Edwards, H., Connolly, J., Bourgeois, B., Treves, S., Guttag, J.: Patient-specific seizure onset detection. Epilepsy Behav. 5, 483–498 (2004)
Panda, R., Khobragade, P., Jambhule, P., Jengthe, S., Pal, P., Gandhi, T.: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction. In: Proceedings of 2010 International Conference on Systems in Medicine and Biology, pp. 405–408 (2010)
Nageswari, M., Banu, U., Kumar, K., Sujith, S.: Feature extraction of ECG using Daubechies wavelet and classification based on fuzzy c-means clustering technique. In: Proceeding of National Conference on Control, Communication and Information Technology, pp. 43–47 (2013)
Guler, I., Ubeyli, E.: Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 11(2), 117–126 (2007)
Garg, S., Narvey, R.: Denoising & feature extraction of EEG signal using wavelet transform. Int. J. Eng. Sci. Technol. (IJEST) 5(6), 1249–1253 (2013)
Samanwoy, G.-D., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54(9), 1545–1551 (2007)
Hsu, K.-C., Yu, S.-N.: Detection of seizures in EEG using subband non linear parameters and genetic algorithm. Comput. Biol. Med. 40, 823–830 (2010)
Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)
Song, Y., Crowcroft, J., Zhang, J.: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Methods 210, 132–146 (2012)
Han, L., Wang, H., Liu, C., Li, C.: Epileptic seizure detection using wavelet transform based sample entropy and support vector machine. In: Proceeding of the IEEE International Conference on Information and Automation, pp. 759–762 (2012)
Easwaramoorthy, D., Uthayakumar, R.: Analysis of biomedical EEG signals using wavelet transforms and multifractal analysis. In: Communication Control and Computing Technologies (ICCCCT), pp. 544–549 (2010)
Khoa, T., Ha, V., Toi, V.: Higuchi fractal properties of onset epilepsy electroencephalogram. Comput. Math. Methods Med. 2012, 1–6 (2012)
Khushaba, R., Al-Ani, A., Al-Jumaily, A.: Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst. Appl. 38, 11515–11526 (2011)
EEG time series download page. http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html. Accessed 2001
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27:1–27:27 (2011)
Suratgar, A., Tavakoli, M., Hoseinabadi, A.: Modified Levenberg-Marquardt method for neural networks training. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 1(6), 1745–1747 (2007)
Kononenko, I., Sikonja, M.: Non-Myopic Feature Quality Evaluation with (R)ReliefF. Computational Methods of Feature Selection, pp. 169–191. Chapman & Hall/CRC, Boca Raton (2008)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
Nabeel, A., Thasneem, F., Paul, J.: Detection of epileptic seizure event and onset using EEG. BioMed Res. Int. 2014, 1–7 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Glossary of Terms/Acronyms
Glossary of Terms/Acronyms
- DWT:
-
Discrete Wavelet Transform
- Ictal:
-
State or event epileptic seizure
- Interictal:
-
State or event between epileptic seizures
- SZN:
-
The dataset that seizure is denoted S, healthy Z and interictal is N
- LMBPNN:
-
Levenberg-Marquadt Back Propagation Neural Network
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Alzami, F., Wang, D., Yu, Z., You, J., Wong, HS., Han, G. (2016). Robust Epileptic Seizure Classification. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-42294-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42293-0
Online ISBN: 978-3-319-42294-7
eBook Packages: Computer ScienceComputer Science (R0)