Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparative Study of LOWESS and RBF Approximations for Visualization

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9787))

Included in the following conference series:

Abstract

Approximation methods are widely used in many fields and many techniques have been published already. This comparative study presents a comparison of LOWESS (Locally weighted scatterplot smoothing) and RBF (Radial Basis Functions) approximation methods on noisy data as they use different approaches. The RBF approach is generally convenient for high dimensional scattered data sets. The LOWESS method needs finding a subset of nearest points if data are scattered. The experiments proved that LOWESS approximation gives slightly better results than RBF in the case of lower dimension, while in the higher dimensional case with scattered data the RBF method has lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D: :

dimension

K: :

k-nearest points

M: :

number of radial basis functions for approximation

N: :

number of all input points

R: :

number of points at which the approximation is calculated

ξ: :

point where to calculate the approximation

d: :

degree of polynomial

r: :

r = d + 2

q: :

q = d + 1

References

  1. Bellochino, F., Borghese, N.A., Ferrari, S., Piuri, V.: 3D surface Reconstruction. Springer, New York (2013). ISBN:978-1-4614-5632-2

    Book  MATH  Google Scholar 

  2. Chen, L.M.: Digital Functions and Data Reconstruction. Springer, New York (2013). ISBN:978-1-4614-5637-7

    Book  MATH  Google Scholar 

  3. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979). doi:10.2307/2286407

    Article  MathSciNet  MATH  Google Scholar 

  4. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publ., Singapore (2007). ISBN:978-981-270-633-1

    Book  MATH  Google Scholar 

  5. Hickernell, F.J., Hon, Y.C.: Radial basis function approximation as smoothing splines. Appl. Math. Comput. 102, 1–24 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lazzaro, D., Montefusco, L.B.: Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 1040, 521–536 (2002). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  7. Narcowich, F.J.: Recent developments in error estimates for scattered data interpolation via radial basis functions. Numer. Algorithms 39, 307–315 (2005). Springer

    Article  MathSciNet  MATH  Google Scholar 

  8. Pan, R., Skala, V.: A two level approach to implicit modeling with compactly supported radial basis functions. Eng. Comput. 27(3), 299–307 (2011). doi:10.1007/s00366-010-0199-1. ISSN:0177-0667. Springer

    Article  Google Scholar 

  9. Pan, R., Skala, V.: Surface reconstruction with higher-order smoothness. Vis. Comput. 28(2), 155–162 (2012). ISSN:0178-2789. Springer

    Article  Google Scholar 

  10. Skala, V: Progressive RBF interpolation. In: 7th Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction, Afrigraph 2010, pp. 17–20. ACM (2010). ISBN:978-1-4503-0118-3

    Google Scholar 

  11. Skala, V., Pan, R., Nedved, O.: Making 3D replicas using a flatbed scanner and a 3D printer. In: Murgante, B., et al. (eds.) ICCSA 2014, Part VI. LNCS, vol. 8584, pp. 76–86. Springer, Heidelberg (2014). ISBN:978-3-319-09152-5

    Chapter  Google Scholar 

  12. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995). doi:10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  13. Yao, X., Fu, B., Lü, Y., et al.: Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment. PLoS ONE 8(1), e54660 (2013). doi:10.1371/journal.pone.0054660

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues at the University of West Bohemia, Plzen, for their comments and suggestions, and anonymous reviewers for their valuable critical comments and advice. The research was supported by MSMT CR projects LH12181 and SGS 2016-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Smolik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Smolik, M., Skala, V., Nedved, O. (2016). A Comparative Study of LOWESS and RBF Approximations for Visualization. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9787. Springer, Cham. https://doi.org/10.1007/978-3-319-42108-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42108-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42107-0

  • Online ISBN: 978-3-319-42108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics