Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hourly Solar Radiation Forecasting Through Model Averaged Neural Networks and Alternating Model Trees

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

The objective of the current study was to develop a solar radiation forecasting model capable of determining the specific times during a given day that solar panels could be relied upon to produce energy in sufficient quantities to meet the demand of the energy provider, Southern Company. Model averaged neural networks (MANN) and alternating model trees (AMT) were constructed to forecast solar radiation an hour into the future, given 2003–2012 solar radiation data from the Griffin, GA weather station for training and 2013 data for testing. Generalized linear models (GLM), random forests, and multilayer perceptron (MLP) were developed, in order to assess the relative performance improvement attained by the MANN and AMT models. In addition, a literature review of the most prominent hourly solar radiation models was performed and normalized root mean square error was calculated for each, for comparison with the MANN and AMT models. The results demonstrate that MANN and AMT models outperform or parallel the highest performing forecasting models within the literature. MANN and AMT are thus promising time series forecasting models that may be further improved by combining these models into an ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A Markov transition matrix is a matrix which characterizes the transitions of a Markov chain [1]. For a given element i, j describes the probability of moving from state i to state j in one time step. It is also known as a probability matrix, substitution matrix, or a stochastic matrix.

References

  1. Asmussen, S.R.: Markov chains. In: Applied Probability and Queues. Stochastic Modelling and Applied Probability, vol. 51, pp. 3–8 (2003)

    Google Scholar 

  2. Benmouiza, K., Cheknane, A.: Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers. Manag. 75, 561–569 (2013)

    Article  Google Scholar 

  3. Cao, J., Lin, X.: Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks. Energy Convers. Manag. 49(6), 1396–1406 (2008)

    Article  Google Scholar 

  4. Elizondo, D., Hoogenboom, G., McClendon, R.W.: Development of a neural network model to predict daily solar radiation. Agric. For. Meteorol. 71(1), 115–132 (1994)

    Article  Google Scholar 

  5. Fidan, M., Hocaoğlu, F.O., Gerek, Ö.N.: Harmonic analysis based hourly solar radiation forecasting model. IET Renew. Power Gener. 9(3), 218–227 (2014)

    Article  Google Scholar 

  6. Frank, E., Mayo, M., Kramer, S.: Alternating model trees. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 871–878 (2015)

    Google Scholar 

  7. Hamilton, C., Potter, W., Hoogenboom, G., McClendon, R., Hobbs, W.: Solar radiation time series prediction. Int. J. Comput. Control Quant. Inf. Eng. 9(5), 656–661 (2015)

    Google Scholar 

  8. Heaton, J.: Introduction to the math of neural networks. Heaton Research, Inc. (2011)

    Google Scholar 

  9. Hocaoğlu, F.O., Gerek, Ö.N., Kurban, M.: Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks. Solar Energy 82(8), 714–726 (2008)

    Article  Google Scholar 

  10. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  11. Hoff, T.E., Perez, R., Kleissl, J., Renne, D., Stein, J.: Reporting of irradiance modeling relative prediction errors. Prog. Photovoltaics: Res. Appl. 21(7), 1514–1519 (2013)

    Article  Google Scholar 

  12. Horrigan, L., Lawrence, R.S., Walker, P.: How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 110, 445–456 (2002)

    Article  Google Scholar 

  13. Huang, J., Korolkiewicz, M., Agrawal, M., Boland, J.: Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model. Solar Energy 87, 136–149 (2013)

    Article  Google Scholar 

  14. Igel, C., Hüsken, M.: Improving the Rprop learning algorithm. In: Second International Symposium on Neural Computation (NC 2000), pp. 115–121 (2000)

    Google Scholar 

  15. Igel, C., Hüsken, M.: Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing 50, 105–123 (2003)

    Article  MATH  Google Scholar 

  16. Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Geneva, Switzerland (2015)

    Google Scholar 

  17. Izgi, E., Öztopal, A., Yerli, B., Kaymak, M.K., Şahin, A.D.: Short–mid-term solar power prediction by using artificial neural networks. Solar Energy 86(2), 725–733 (2012)

    Article  Google Scholar 

  18. Ji, W., Chee, K.C.: Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Solar Energy 85(5), 808–817 (2011)

    Article  Google Scholar 

  19. Levenberg, K.: A method for the solution of certain non–linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marquez, R., Coimbra, C.F.: Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Solar Energy 85(5), 746–756 (2011)

    Article  Google Scholar 

  21. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mellit, A., Menghanem, M., Bendekhis, M.: Artificial neural network model for prediction solar radiation data: application for sizing stand-alone photovoltaic power system. In: Power Engineering Society General Meeting, pp. 40–44, IEEE, June 2005

    Google Scholar 

  23. Paoli, C., Voyant, C., Muselli, M., Nivet, M.L.: Forecasting of preprocessed daily solar radiation time series using neural networks. Solar Energy 84(12), 2146–2160 (2010)

    Article  Google Scholar 

  24. Pedro, H.T., Coimbra, C.F.: Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy 86(7), 2017–2028 (2012)

    Article  Google Scholar 

  25. Perez, R., Kivalov, S., Schlemmer, J., Hemker, K., Renné, D., Hoff, T.E.: Validation of short and medium term operational solar radiation forecasts in the US. Solar Energy 84(12), 2161–2172 (2010)

    Article  Google Scholar 

  26. Reikard, G.: Predicting solar radiation at high resolutions: a comparison of time series forecasts. Solar Energy 83(3), 342–349 (2009)

    Article  Google Scholar 

  27. Riedmiller, M.: Rprop-Description and implementation details: technical report. Inst. f. Logik, Komplexität u. Deduktionssysteme (1994)

    Google Scholar 

  28. Ripley, B.: Pattern Recognition and Neural Networks. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  29. Sfetsos, A., Coonick, A.H.: Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy 68(2), 169–178 (2000)

    Article  Google Scholar 

  30. Spokas, K., Forcella, F.: Estimating hourly incoming solar radiation from limited meteorological data. Weed Sci. 54(1), 182–189 (2006)

    Article  Google Scholar 

  31. Wang, F., Mi, Z., Su, S., Zhao, H.: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 5(5), 1355–1370 (2012)

    Article  Google Scholar 

  32. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Los Altos (2011)

    Google Scholar 

  33. World Population Prospects, the 2012 Revision (2012). http://esa.un.org/wpp/. Accessed 5 April 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron R. Hamilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hamilton, C.R., Maier, F., Potter, W.D. (2016). Hourly Solar Radiation Forecasting Through Model Averaged Neural Networks and Alternating Model Trees. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics