Abstract
Massive social media data are being created and uploaded to online nowadays. These media data associated with geographical information reflect people’s footprints of movements. This study investigates into extraction of people’s common semantic trajectories from geo-referenced social media data using geo-tagged images. We first convert geo-tagged photographs into semantic trajectories based on regions-of-interest, and then apply density-based clustering with a similarity measure designed for multi-dimensional semantic trajectories. Using real geo-tagged photographs, we find interesting people’s common semantic mobilities. These semantic behaviors demonstrate the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Geonames: http://www.geonames.org/.
- 2.
References
Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, p. 22. ACM (2007)
Alvares, L.O., Bogorny, V., Palma, A., Kuijpers, B., Moelans, B., Macedo, J.A.F.: Towards Semantic Trajectory Knowledge Discovery. In: Technical report, Hasselt University, Belgium, October 2007
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM Sigmod Record, vol. 28, pp. 49–60. ACM (1999)
Bermingham, L., Lee, I.: Spatio-temporal sequential pattern mining for tourism sciences. Procedia Comput. Sci. 29, 379–389 (2014)
Cai, G., Hio, C., Bermingham, L., Lee, K., Lee, I.: Sequential pattern mining of geo-tagged photos with an arbitrary regions-of-interest detection method. Expert Syst. Appl. 41(7), 3514–3526 (2014)
Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: ICWSM 2011, pp. 81–88 (2011)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
Furtado, A.S., Kopanaki, D., Alvares, L.O., Bogorny, V.: Multidimensional similarity measuring for semantic trajectories. Trans. GIS 20, 280–298 (2015)
Girardin, F., Fiore, F.D., Ratti, C., Blat, J.: Leveraging explicitly disclosed location information to understand tourist dynamics: a case study. J. Locat. Based Serv. 2(1), 41–56 (2008)
Hio, C., Bermingham, L., Cai, G., Lee, K., Lee, I.: A hybrid grid-based method for mining arbitrary regions-of-interest from trajectories. In: Proceedings of Workshop on Machine Learning for Sensory Data Analysis, p. 5. ACM (2013)
Lin, D.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304 (1998)
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 45(4), 42 (2013)
Pfoser, D., Jensen, C.S., Theodoridis, Y., et al.: Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB, pp. 395–406 (2000)
Zheng, Y.T., Zha, Z.J., Chua, T.S.: Mining travel patterns from geotagged photos. ACM Trans. Intell. Syst. Technol. (TIST) 3(3), 56 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Cai, G., Lee, K., Lee, I. (2016). Discovering Common Semantic Trajectories from Geo-tagged Social Media. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-42007-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42006-6
Online ISBN: 978-3-319-42007-3
eBook Packages: Computer ScienceComputer Science (R0)