Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Common Semantic Trajectories from Geo-tagged Social Media

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

Massive social media data are being created and uploaded to online nowadays. These media data associated with geographical information reflect people’s footprints of movements. This study investigates into extraction of people’s common semantic trajectories from geo-referenced social media data using geo-tagged images. We first convert geo-tagged photographs into semantic trajectories based on regions-of-interest, and then apply density-based clustering with a similarity measure designed for multi-dimensional semantic trajectories. Using real geo-tagged photographs, we find interesting people’s common semantic mobilities. These semantic behaviors demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Geonames: http://www.geonames.org/.

  2. 2.

    http://www.bom.gov.au/climate.

References

  1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, p. 22. ACM (2007)

    Google Scholar 

  2. Alvares, L.O., Bogorny, V., Palma, A., Kuijpers, B., Moelans, B., Macedo, J.A.F.: Towards Semantic Trajectory Knowledge Discovery. In: Technical report, Hasselt University, Belgium, October 2007

    Google Scholar 

  3. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM Sigmod Record, vol. 28, pp. 49–60. ACM (1999)

    Google Scholar 

  4. Bermingham, L., Lee, I.: Spatio-temporal sequential pattern mining for tourism sciences. Procedia Comput. Sci. 29, 379–389 (2014)

    Article  Google Scholar 

  5. Cai, G., Hio, C., Bermingham, L., Lee, K., Lee, I.: Sequential pattern mining of geo-tagged photos with an arbitrary regions-of-interest detection method. Expert Syst. Appl. 41(7), 3514–3526 (2014)

    Article  Google Scholar 

  6. Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: ICWSM 2011, pp. 81–88 (2011)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  8. Furtado, A.S., Kopanaki, D., Alvares, L.O., Bogorny, V.: Multidimensional similarity measuring for semantic trajectories. Trans. GIS 20, 280–298 (2015)

    Article  Google Scholar 

  9. Girardin, F., Fiore, F.D., Ratti, C., Blat, J.: Leveraging explicitly disclosed location information to understand tourist dynamics: a case study. J. Locat. Based Serv. 2(1), 41–56 (2008)

    Article  Google Scholar 

  10. Hio, C., Bermingham, L., Cai, G., Lee, K., Lee, I.: A hybrid grid-based method for mining arbitrary regions-of-interest from trajectories. In: Proceedings of Workshop on Machine Learning for Sensory Data Analysis, p. 5. ACM (2013)

    Google Scholar 

  11. Lin, D.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304 (1998)

    Google Scholar 

  12. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 45(4), 42 (2013)

    Article  Google Scholar 

  13. Pfoser, D., Jensen, C.S., Theodoridis, Y., et al.: Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB, pp. 395–406 (2000)

    Google Scholar 

  14. Zheng, Y.T., Zha, Z.J., Chua, T.S.: Mining travel patterns from geotagged photos. ACM Trans. Intell. Syst. Technol. (TIST) 3(3), 56 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ickjai Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, G., Lee, K., Lee, I. (2016). Discovering Common Semantic Trajectories from Geo-tagged Social Media. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics