Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finding Boundary Elements in Ordered Sets with Application to Safety and Requirements Analysis

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9763))

Included in the following conference series:

Abstract

The motivation for this study comes from various sources such as parametric formal verification, requirements engineering, and safety analysis. In these areas, there are often situations in which we are given a set of configurations and a property of interest with the goal of computing all the configurations for which the property is valid. Checking the validity of each single configuration may be a costly process. We are thus interested in reducing the number of such validity queries. In this work, we assume that the configuration space is equipped with a partial ordering that is preserved by the property to be checked. In such a case, the set of all valid configurations can be effectively represented by the set of all maximum valid (or minimum invalid) configurations w.r.t. the ordering. We show an algorithm to compute such boundary elements. We explain how this general setting applies to consistency and redundancy checking of requirements and to finding minimum cut-sets for safety analysis. We further discuss various heuristics and evaluate their efficiency, measured primarily by the number of validity queries, on a preliminary set of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Barnat, J., Bauch, P., Beneš, N., Brim, L., Beran, J., Kratochvíla, T.: Analysing sanity of requirements for avionics systems. Form. Aspects Comput. 28(1), 45–63 (2016). doi:10.1007/s00165-015-0348-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnat, J., Bauch, P., Brim, L.: Checking sanity of software requirements. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 48–62. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek, T.: On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 693–705 (2012)

    Article  Google Scholar 

  5. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal model checking. Form. Methods Syst. Des. 18(2), 141–163 (2001)

    Article  MATH  Google Scholar 

  6. Belov, A., Marques-Silva, J.: MUSer2: an efficient MUS extractor. J. Satisfiability Boolean Model. Comput. 8, 123–128 (2012)

    MATH  Google Scholar 

  7. Chen, Y., Chen, Y.: On the decomposition of posets. In: 2012 International Conference on Computer Science Service System (CSSS), pp. 134–138 (2012)

    Google Scholar 

  8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  9. Dajani-Brown, S., Cofer, D., Hartmann, A.C., Pratt, T.W.: Formal modeling and analysis of an avionics triplex sensor voter. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 34–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Am. Math. Soc. 7(4), 701–702 (1956)

    MathSciNet  MATH  Google Scholar 

  12. Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software engineering and formal methods. Commun. ACM 51, 54–59 (2008)

    Article  Google Scholar 

  13. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based safety analysis. In: The 24th Digital Avionics Systems Conference, 2005. DASC 2005, vol. 2. IEEE (2005)

    Google Scholar 

  14. Lauria, M.: CNFgen formula generator. http://massimolauria.github.io/cnfgen/. Accessed 11 Jan 2016

  15. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration. Constraints 21(2), 223–250 (2016). http://link.springer.com/article/10.1007%2Fs10601-015-9183-0

    Google Scholar 

  16. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The research leading to these results has received funding from the European Unions Seventh Framework Program (FP7/2007-2013) for CRYSTAL Critical System Engineering Acceleration Joint Undertaking under grant agreement No. 332830 and from specific national programs and/or funding authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Bendík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bendík, J., Beneš, N., Barnat, J., Černá, I. (2016). Finding Boundary Elements in Ordered Sets with Application to Safety and Requirements Analysis. In: De Nicola, R., Kühn, E. (eds) Software Engineering and Formal Methods. SEFM 2016. Lecture Notes in Computer Science(), vol 9763. Springer, Cham. https://doi.org/10.1007/978-3-319-41591-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41591-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41590-1

  • Online ISBN: 978-3-319-41591-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics