Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constraint Solving for Verifying Modal Specifications of Workflow Nets with Data

  • Conference paper
  • First Online:
Perspectives of System Informatics (PSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9609))

Abstract

For improving efficiency and productivity companies are used to work with workflows that allow them to manage the tasks and steps of business processes. Furthermore, modalities have been designed to allow loose specifications by indicating whether activities are necessary or admissible. This paper aims at verifying modal specifications of coloured workflows with data assigned to the tokens and modified by transitions. To this end, executions of coloured workflow nets are modelled using constraint systems, and constraint solving is used to verify modal specifications specifying necessary or admissible behaviours. An implementation supporting the proposed approach and promising experimental results on an issue tracking system constitute a practical contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For confidentiality reasons, the details about this case study are not given.

  2. 2.

    http://projects.eclipse.org/projects/modeling.sirius.

  3. 3.

    https://sicstus.sics.se.

References

  1. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specification language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 76–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P.: Three good reasons for using a petri-net-based workflow management system. J. Inf. Process Integr. Enterp. 428, 161–182 (1997)

    Google Scholar 

  4. van der Aalst, W.M.P., Van Hee, K.M., Houben, G.J.: Modelling and analysing workflow using a Petri-net based approach. In: Workshop on Computer-Supported Cooperative Work, Petri nets and Related Formalisms, pp. 31–50, June 1994

    Google Scholar 

  5. Ellis, C.A., Nutt, G.J.: Modeling and enactment of workflow systems. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Liu, D., Wang, J., Chan, S.C.F., Sun, J., Zhang, L.: Modeling workflow processes with colored Petri nets. Comput. Ind. 49(3), 267–281 (2002)

    Article  Google Scholar 

  7. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  8. Jensen, K.: Coloured Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties. LNCS, pp. 248–299. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  9. Larsen, K.G., Thomsen, B.: A modal process logic. In: 3rd Annual Symposium on Logic in Computer Science, LICS 1988, Edinburgh, UK, pp. 203–210. IEEE CSP, July 1988

    Google Scholar 

  10. Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications using constraint solving. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 171–186. Springer, Heidelberg (2014)

    Google Scholar 

  11. Murata, T.: Petri nets: Properties, analysis and applications. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  12. Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: Sprawozdanie z I Kongresu metematykw slowiaskich, Warszawa, Poland, pp. 92–101 (1929)

    Google Scholar 

  13. Macworth, A.K.: Consistency in networks of relations. J. Artif. Intell. 8(1), 99–118 (1977)

    Article  Google Scholar 

  14. van Hentenryck, P., Dincbas, M.: Domains in logic programming. In: National Conference on Artificial Intelligence, AAAI 1986, pp. 759–765, August 1986

    Google Scholar 

  15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Englewood Cliffs (1967)

    MATH  Google Scholar 

  16. Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

    Google Scholar 

  17. Vilkomir, S., Bowen, J.: Formalization of software testing criteria using the Z notation. In: 25th International Conference on Computer Software and Applications, COMPSAC 2001, Chicago, IL, USA, pp. 351–356. IEEE CSP, October 2001

    Google Scholar 

  18. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous composition of modal Petri nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp. 96–120. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Desel, J.: Basic linear algebraic techniques for place/transition nets. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)

    Google Scholar 

  20. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 603–619. Springer, Heidelberg (2014)

    Google Scholar 

  21. Bourdeaud’huy, T., Hanafi, S., Yim, P.: Incremental Integer Linear Programming Models for Petri Nets Reachability Problems. Petri Net: Theory and Applications. InTech, Rijeka (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadrien Bride .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bride, H., Kouchnarenko, O., Peureux, F. (2016). Constraint Solving for Verifying Modal Specifications of Workflow Nets with Data. In: Mazzara, M., Voronkov, A. (eds) Perspectives of System Informatics. PSI 2015. Lecture Notes in Computer Science(), vol 9609. Springer, Cham. https://doi.org/10.1007/978-3-319-41579-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41579-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41578-9

  • Online ISBN: 978-3-319-41579-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics