Abstract
In this paper, we introduce a notion of backdoors to Reiter’s propositional default logic and study structural properties of it. Also we consider the problems of backdoor detection (parameterised by the solution size) as well as backdoor evaluation (parameterised by the size of the given backdoor), for various kinds of target classes (cnf, horn, krom, monotone, positive-unit). We show that backdoor detection is fixed-parameter tractable for the considered target classes, and backdoor evaluation is either fixed-parameter tractable, in \({\mathrm {para}}\text {-}\varDelta ^P_2\), or in \({\mathrm {para}}\text {-}\mathrm {NP}\), depending on the target class.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of default logic. J. Logic Comput. 22(3), 587–604 (2012)
Boros, E., Crama, Y., Hammer, P.L.: Polynomial-time inference of all valid implications for horn and related formulae. Ann. Math. Artif. Intell. 1(1–4), 21–32 (1990)
Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time. Discrete Appl. Math. 55(1), 1–13 (1994)
Chen, J., Chor, B., Fellows, M.R., Huang, X., Juedes, D.W., Kanji, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)
Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)
Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Volume Formal Models and Semantics, pp. 193–242. Elsevier Science Publishers, North-Holland (1990)
Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-order Logic: A Language Theoretic Approach. Cambridge University Press, Cambridge (2012)
Creignou, N., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of autoepistemic logic. ACM Trans. Comput. Logic 13(2), 1–22 (2012)
de Haan, R., Szeider, S.: Fixed-parameter tractable reductions to SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 85–102. Springer, Heidelberg (2014)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)
Dvořák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract argumentation. Artif. Intell. 186, 157–173 (2012)
Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quantified boolean formulas. In: Kautz, H., Porter, B. (eds.) Proceedings of the 17th Conference on Artificial Intelligence (AAAI 2000), Austin, TX, USA, pp. 417–422. The AAAI Press, July 2000
Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-hitting set. Algorithmica 57(1), 97–118 (2010)
Fichte, J., Meier, A., Schindler, I.: Strong Backdoors for Default Logic. Technical report. CoRR: abs/1483200, arXiv (2016)
Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. ACM Trans. Comput. Logic 17(1), 7 (2015)
Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Artif. Intell. 220, 64–103 (2015)
Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput. 187(2), 291–319 (2003)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Theoretical Computer Science, vol. 14. Springer, Heidelberg (2006)
Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)
Gottlob, G.: Complexity results for nonmonotonic logics. J. Logic Comput. 2(3), 397–425 (1992)
Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)
Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic reasoning. Artif. Intell. 138(1–2), 55–86 (2002)
Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems. Comput. J. 51(3), 303–325 (2006). Survey paper
Marek, V.W., Truszczyński, M.: Nonmonotonic Logic: Context-Dependent Reasoning. Artificial Intelligence. Springer, Heidelberg (1993)
McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Artif. Intell. 13, 27–39 (1980)
McDermott, D., Doyle, J.: Non-montonic logic I. Artif. Intell. 13, 41–72 (1980)
Meier, A., Schindler, I., Schmidt, J., Thomas, M., Vollmer, H.: On the parameterized complexity of non-monotonic logics. Arch. Math. Logic 54(5–6), 685–710 (2015)
Moore, R.C.: Semantical considerations on modal logic. Artif. Intell. 25, 75–94 (1985)
Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to abduction. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, pp. 1046–1052. The AAAI Press, August 2013
Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)
Rosati, R.: Model checking for nonmonotonic logics: algorithms and complexity. In: Dean, T. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence (ICJAI 1999), Stockholm, Sweden. The AAAI Press, July 1999
Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 425–454. IOS Press, Amsterdam (2009)
Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978), San Diego, CA, USA, pp. 216–226. Association for Computing Machinery, New York (1978)
Schnorr, C.-P.: On self-transformable combinatorial problems. In: König, H., Korte, B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach. Mathematical Programming Studies, vol. 14, pp. 225–243. Springer, Heidelberg (1981)
Stillman, J.P.: It’s not my default: the complexity of membership problems in restricted propositional default logics. In: Dietterich, T., Swartout, W. (eds.) Proceedings of the 8th National Conference on Artificial Intelligence (AAAI 1990), Boston, MA, USA, vol. 1, pp. 571–578. The AAAI Press, July 1990
Stillman, J.P.: The complexity of horn theories with normal unary defaults. In: Proceedings of the 8th Canadian Artificial Intelligence Conference (AI 1990) (1990)
Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)
Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 1173–1178. Morgan Kaufmann, August 2003
Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT 2003), Portofino, Italy, pp. 222–230, May 2003
Acknowledgements
The first author gratefully acknowledges support by the Austrian Science Fund (FWF), Grant Y698. He is also affiliated with the Institute of Computer Science and Computational Science at University of Potsdam, Germany. The second and third author gratefully acknowledge support by the German Research Foundation (DFG), Grant ME 4279/1-1. The authors thank Jonni Virtema for pointing out Lemma 6 and Sebastian Ordyniak for discussions on Lemma 11. The authors acknowledge the helpful comments of the anonymous reviewers.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Fichte, J.K., Meier, A., Schindler, I. (2016). Strong Backdoors for Default Logic. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-40970-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40969-6
Online ISBN: 978-3-319-40970-2
eBook Packages: Computer ScienceComputer Science (R0)