Abstract
In this paper, a method of successive approximations based on the fuzzy block-pulse functions is proposed to solve linear fuzzy Fredholm integral equations of the second kind. Moreover, the error estimation of the approximation solution is given. Finally, illustrative example is included to show the accuracy and the efficiency of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasbandy, S., Babolian, E., Alavi, M.: Numerical method for solving linear Fredholm fuzzy integral equations of the second kind. Chaos Solitons Fractals 31(1), 138–146 (2007)
Anastassiou, G.A.: Fuzzy Mathematics: Approximation Theory. Springer, Berlin (2010)
Babolian, E., Goghary, H.S., Abbasbandy, S.: Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl. Math. Comput. 161, 733–744 (2005)
Baghmisheh, M., Ezzati, R.: Numerical solution of nonlinear fuzzy Fredholm integral equations of the second kind using hybrid of block-pulse functions and Taylor series. Adv. Differ. Equat. 51 (2015). doi:10.1186/s13662-015-0389-7
Bede, B., Gal, S.G.: Quadrature rules for integrals of fuzzy-number-valued functions. Fuzzy Sets Syst. 145, 359–380 (2004)
Bica, A.M.: Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations. Inf. Sci. 178, 1279–1292 (2008)
Bica, A.M., Popescu, C.: Approximating the solution of nonlinear Hammerstein fuzzy integral equations. Fuzzy Sets Syst. 245, 1–17 (2014)
Congxin, W., Cong, W.: The supremum and infimum of the set of fuzzy numbers and its applications. J. Math. Anal. Appl. 210, 499–511 (1997)
Dubois, D., Prade, H.: Fuzzy numbers: an overview. In: Analysis of Fuzzy Information, vol. 1, pp. 3–39. CRC Press, Boca Raton (1987)
Ezzati, R., Ziari, S.: Numerical solution and error estimation of fuzzy Fredholm integral equation using fuzzy Bernstein polynomials. Aust. J. Basic Appl. Sci. 5(9), 2072–2082 (2011)
Ezzati, R., Ziari, S.: Numerical solution of nonlinear fuzzy Fredholm integral equations using iterative method. Appl. Math. Comput. 225, 33–42 (2013)
Fariborzi Araghi, M.A., Parandin, N.: Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle. Soft. Comput. 15, 2449–2456 (2011)
Friedman, M., Ma, M., Kandel, A.: Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst. 106, 35–48 (1999)
Friedman, M., Ma, M., Kandel, A.: Solutions to fuzzy integral equations with arbitrary kernels. Int. J. Approx. Reason. 20, 249–262 (1999)
Fang, J.-X., Xue, Q.-Y.: Some properties of the space fuzzy-valued continuous functions on a compact set. Fuzzy Sets Syst. 160, 1620–1631 (2009)
Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)
Gong, Z., Wu, C.: Bounded variation absolute continuity and absolute integrability for fuzzy-number-valued functions. Fuzzy Sets Syst. 129, 83–94 (2002)
Jiang, Z.H., Schanfelberger, W.: Block-Pulse Functions and Their Applications in Control Systems. Springer, Berlin (1992)
Park, J.Y., Han, H.K.: Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations. Fuzzy Sets Syst. 105, 481–488 (1999)
Park, J.Y., Jeong, J.U.: On the existence and uniqueness of solutions of fuzzy Volttera-Fredholm integral equations. Fuzzy Sets Syst. 115, 425–431 (2000)
Subrahmanyam, P.V., Sudarsanam, S.K.: A note on fuzzy Volterra integral equations. Fuzzy Sets Syst. 81, 237–240 (1996)
Wu, C., Gong, Z.: On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets Syst. 120, 523–532 (2001)
Ziari, S., Ezzati, R., Abbasbandy, S.: Numerical solution of linear fuzzy Fredholm integral equations of the second kind using fuzzy haar wavelet. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part III. CCIS, vol. 299, pp. 79–89. Springer, Heidelberg (2012)
Ziari, S., Bica, A.M.: New error estimate in the iterative numerical method for nonlinear fuzzy Hammerstein-Fredholm integral equations. Fuzzy Sets Syst. 295, 136–152 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ziari, S., Ezzati, R. (2016). Fuzzy Block-Pulse Functions and Its Application to Solve Linear Fuzzy Fredholm Integral Equations of the Second Kind. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_67
Download citation
DOI: https://doi.org/10.1007/978-3-319-40581-0_67
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40580-3
Online ISBN: 978-3-319-40581-0
eBook Packages: Computer ScienceComputer Science (R0)