Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Block-Pulse Functions and Its Application to Solve Linear Fuzzy Fredholm Integral Equations of the Second Kind

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

In this paper, a method of successive approximations based on the fuzzy block-pulse functions is proposed to solve linear fuzzy Fredholm integral equations of the second kind. Moreover, the error estimation of the approximation solution is given. Finally, illustrative example is included to show the accuracy and the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasbandy, S., Babolian, E., Alavi, M.: Numerical method for solving linear Fredholm fuzzy integral equations of the second kind. Chaos Solitons Fractals 31(1), 138–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anastassiou, G.A.: Fuzzy Mathematics: Approximation Theory. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  3. Babolian, E., Goghary, H.S., Abbasbandy, S.: Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl. Math. Comput. 161, 733–744 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Baghmisheh, M., Ezzati, R.: Numerical solution of nonlinear fuzzy Fredholm integral equations of the second kind using hybrid of block-pulse functions and Taylor series. Adv. Differ. Equat. 51 (2015). doi:10.1186/s13662-015-0389-7

  5. Bede, B., Gal, S.G.: Quadrature rules for integrals of fuzzy-number-valued functions. Fuzzy Sets Syst. 145, 359–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bica, A.M.: Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations. Inf. Sci. 178, 1279–1292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bica, A.M., Popescu, C.: Approximating the solution of nonlinear Hammerstein fuzzy integral equations. Fuzzy Sets Syst. 245, 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Congxin, W., Cong, W.: The supremum and infimum of the set of fuzzy numbers and its applications. J. Math. Anal. Appl. 210, 499–511 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubois, D., Prade, H.: Fuzzy numbers: an overview. In: Analysis of Fuzzy Information, vol. 1, pp. 3–39. CRC Press, Boca Raton (1987)

    Google Scholar 

  10. Ezzati, R., Ziari, S.: Numerical solution and error estimation of fuzzy Fredholm integral equation using fuzzy Bernstein polynomials. Aust. J. Basic Appl. Sci. 5(9), 2072–2082 (2011)

    Google Scholar 

  11. Ezzati, R., Ziari, S.: Numerical solution of nonlinear fuzzy Fredholm integral equations using iterative method. Appl. Math. Comput. 225, 33–42 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Fariborzi Araghi, M.A., Parandin, N.: Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle. Soft. Comput. 15, 2449–2456 (2011)

    Article  MATH  Google Scholar 

  13. Friedman, M., Ma, M., Kandel, A.: Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst. 106, 35–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, M., Ma, M., Kandel, A.: Solutions to fuzzy integral equations with arbitrary kernels. Int. J. Approx. Reason. 20, 249–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, J.-X., Xue, Q.-Y.: Some properties of the space fuzzy-valued continuous functions on a compact set. Fuzzy Sets Syst. 160, 1620–1631 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gong, Z., Wu, C.: Bounded variation absolute continuity and absolute integrability for fuzzy-number-valued functions. Fuzzy Sets Syst. 129, 83–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, Z.H., Schanfelberger, W.: Block-Pulse Functions and Their Applications in Control Systems. Springer, Berlin (1992)

    Book  Google Scholar 

  19. Park, J.Y., Han, H.K.: Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations. Fuzzy Sets Syst. 105, 481–488 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Park, J.Y., Jeong, J.U.: On the existence and uniqueness of solutions of fuzzy Volttera-Fredholm integral equations. Fuzzy Sets Syst. 115, 425–431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Subrahmanyam, P.V., Sudarsanam, S.K.: A note on fuzzy Volterra integral equations. Fuzzy Sets Syst. 81, 237–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, C., Gong, Z.: On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets Syst. 120, 523–532 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ziari, S., Ezzati, R., Abbasbandy, S.: Numerical solution of linear fuzzy Fredholm integral equations of the second kind using fuzzy haar wavelet. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part III. CCIS, vol. 299, pp. 79–89. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Ziari, S., Bica, A.M.: New error estimate in the iterative numerical method for nonlinear fuzzy Hammerstein-Fredholm integral equations. Fuzzy Sets Syst. 295, 136–152 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shokrollah Ziari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ziari, S., Ezzati, R. (2016). Fuzzy Block-Pulse Functions and Its Application to Solve Linear Fuzzy Fredholm Integral Equations of the Second Kind. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40581-0_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40580-3

  • Online ISBN: 978-3-319-40581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics