Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Skyline Maintenance over Frequently Updated Evidential Databases

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

In many recent applications, data are intrinsically uncertain, noisy and error-prone. That is why, uncertain database management has attracted the attention of several researchers. Data uncertainty can be modeled in the evidence theory setting. On the other hand, skyline analysis is a powerful tool in a wide spectrum of real applications involving multi-criteria optimal decision making. It relies on Pareto dominance relationship. However, the skyline maintenance is not an easy task when the queried database is updated. This paper addresses the problem of the maintenance of the skyline objects of frequently updated evidential databases. In particular, we propose algorithms for maintaining evidential skyline in the case of object insertion or deletion. Extensive experiments are conducted to demonstrate the efficiency and scalability of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)

    Article  Google Scholar 

  2. Tobji, M.A.B., Yaghlane, B.B.: Maintaining evidential frequent itemsets in case of data deletion. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 218–227. Springer, Heidelberg (2010)

    Google Scholar 

  3. Bell, D.A., Guan, J.W., Lee, S.K.: Generalized union and project operations for pooling uncertain and imprecise information. Data Knowl. Eng. 18(2), 89–117 (1996)

    Article  MATH  Google Scholar 

  4. Bohm, C., Pryakhin, A., Schubert, M.: The gauss-tree : Efficient object identification in databases of probabilistic feature vectors. In: ICDE 2006, p. 9. IEEE (2006)

    Google Scholar 

  5. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: IN ICDE, pp. 421–430 (2001)

    Google Scholar 

  6. Bosc, P., Pivert, O.: Modeling, querying uncertain relational databases : a survey of approaches based on the possible worlds semantics. J. Fuzziness Knowl. Based Syst. 18(5), 565–603 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Li, X., Yang, Y., Kurniawati, H., Sheng, Q.Z., Hu, H.-Y., Huang, N.: Personal health indexing based on medical examinations: a data mining approach. Decis. Support Syst. 81, 54–65 (2016)

    Article  Google Scholar 

  8. Dempster, A.P.: A generalization of bayesian inference. J. Roy. Stat. Soc. 30, 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Elmi, S., Benouaret, K., Hadjali, A., Bach Tobji, M.A., Ben Yaghlane, B.: Computing skyline from evidential data. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 148–161. Springer, Heidelberg (2014)

    Google Scholar 

  10. Jiang, B., Pei, J., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods. J. Intell. Inf. Syst. 38(1), 1–39 (2012)

    Article  Google Scholar 

  11. Lee, S.K.: Imprecise, uncertain information in databases : An evidential approach. In: Proceedings on Data Engineering, pp. 614–621 (1992)

    Google Scholar 

  12. Li, M., Liu, Y.: Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sen. Netw. 5(2), 1–29 (2009)

    Article  Google Scholar 

  13. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

    Article  Google Scholar 

  14. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: VLDB, pp. 15–26 (2007)

    Google Scholar 

  15. Wu, P., Agrawal, D., Egecioglu, Ö., El Abbadi, A. Deltasky.: Optimal maintenance of skyline deletions without exclusive dominance region generation. In: ICDE, pp. 486–495 (2007)

    Google Scholar 

  16. Xia, T., Zhang, D.: Refreshing the sky : the compressed skycube with efficient support for frequent updates. In: SIGMOD, pp. 491–502. ACM (2006)

    Google Scholar 

  17. Yong, H., Jin, H.K., Seung, W. H.: Skyline ranking for uncertain data with maybe confidence. In: ICDE, pp. 572–579 (2008)

    Google Scholar 

  18. Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.: Minimizing the communication cost for continuous skyline maintenance. In: SIGMOD, pp. 495–508 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allel Hadjali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Elmi, S., Tobji, M.A.B., Hadjali, A., Yaghlane, B.B. (2016). Efficient Skyline Maintenance over Frequently Updated Evidential Databases. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40581-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40580-3

  • Online ISBN: 978-3-319-40581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics