Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Software Package for Chemically Inspired Graph Transformation

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9761))

Included in the following conference series:

Abstract

Chemical reaction networks can be automatically generated from graph grammar descriptions, where transformation rules model reaction patterns. Because a molecule graph is connected and reactions in general involve multiple molecules, the transformation must be performed on multisets of graphs. We present a general software package for this type of graph transformation system, which can be used for modelling chemical systems. The package contains a C++ library with algorithms for working with transformation rules in the Double Pushout formalism, e.g., composition of rules and a domain specific language for programming graph language generation. A Python interface makes these features easily accessible. The package also has extensive procedures for automatically visualising not only graphs and transformation rules, but also Double Pushout diagrams and graph languages in form of directed hypergraphs. The software is available as an open source package, and interactive examples can be found on the accompanying webpage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, J.L., Andersen, T., Flamm, C., Hanczyc, M.M., Merkle, D., Stadler, P.F.: Navigating the chemical space of HCN polymerization and hydrolysis: guiding graph grammars by mass spectrometry data. Entropy 15(10), 4066–4083 (2013)

    Article  MATH  Google Scholar 

  2. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction patterns using rule composition in graph grammars. J. Syst. Chem. 4(1), 4 (2013)

    Article  Google Scholar 

  3. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: 50 shades of rule composition. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 117–135. Springer, Heidelberg (2014)

    Google Scholar 

  4. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Generic strategies for chemical space exploration. Int. J. Comput. Biol. Drug Des. 7(2/3), 225–258 (2014). TR: http://arxiv.org/abs/1302.4006

  5. Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet, O., Pinaud, B.: PORGY: strategy driven interactive transformation of graphs. In: Proceedings of the 6th International Workshop on Computing with Terms and Graphs (TERMGRAPH 2011). Electronic Proceedings in Theoretical Computer Science, vol. 48, pp. 54–68 (2011)

    Google Scholar 

  6. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43(4), 1085–1093 (2003)

    Article  Google Scholar 

  7. Braatz, B., Golas, U., Soboll, T.: How to delete categorically - two pushout complement constructions. J. Symb. Comput. 46(3), 246–271 (2011). Applied and Computational Category Theory

    Article  MathSciNet  MATH  Google Scholar 

  8. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367 (2004)

    Article  Google Scholar 

  9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large graphs. In: Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, pp. 149–159 (2001)

    Google Scholar 

  10. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - Part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Chapter 3, pp. 163–245. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  11. Ehrig, K., Heckel, R., Lajios, G.: Molecular analysis of metabolic pathway with graph transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 107–121. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Fernández, M., Kirchner, H., Namet, O.: A strategy language for graph rewriting. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 173–188. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Flamm, C., Ullrich, A., Ekker, H., Mann, M., Högerl, D., Rohrschneider, M., Sauer, S., Scheuermann, G., Klemm, K., Hofacker, I.L., Stadler, P.F.: Evolution of metabolic networks: a computational framework. J. Syst. Chem. 1(4), 4 (2010)

    Article  Google Scholar 

  14. Increpare games: Catalan (2011). http://www.increpare.com/2011/01/catalan/

  15. Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw. Pract. Exp. 30(11), 1203–1233 (2000)

    Article  MATH  Google Scholar 

  16. Himsolt, M.: GML: a portable graph file format. http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

  17. Kreowski, H.J., Kuske, S.: Graph multiset transformation: a new framework for massively parallel computation inspired by DNA computing. Nat. Comput. 10(2), 961–986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mann, M., Ekker, H., Flamm, C.: The graph grammar library - a generic framework for chemical graph rewrite systems. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 52–53. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: an open chemical toolbox. J. Cheminformatics 3, 33 (2011)

    Article  Google Scholar 

  20. Rosselló, F., Valiente, G.: Analysis of metabolic pathways by graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 70–82. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical graph transformation. Electron. Notes Theor. Comput. Sci. 127(1), 157–166 (2005). Proceedings of the International Workshop on Graph-Based Tools (GraBaTs 2004) Graph-Based Tools 2004

    Article  Google Scholar 

  22. Siek, J.G., Lee, L.Q., Lumsdaine, A.: Boost Graph Library: The User Guide and Reference Manual. Pearson Education, Upper Saddle River (2001). http://www.boost.org/libs/graph/

    Google Scholar 

  23. Sylvester, J.J.: On an application of the new atomic theory to the graphical representation of the invari- ants and covariants of binary quantics, with three appendices. Am. J. Math. 1(1), 64–128 (1878)

    Article  MathSciNet  Google Scholar 

  24. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Tantau, T.: The TikZ and PGF Packages (2013). http://sourceforge.net/projects/pgf/

  26. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  27. Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 83–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the Danish Council for Independent Research, Natural Sciences, the COST Action CM1304 “Emergence and Evolution of Complex Chemical Systems”, and the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jakob L. Andersen or Daniel Merkle .

Editor information

Editors and Affiliations

A Examples

A Examples

The following is a short list of examples that show how MedØlDatschgerl can be used via the Python interface. They are all available as modifiable script in the live version of the software, accessible at http://mod.imada.sdu.dk/playground.html.

1.1 A.1 Graph Interface

Graph objects have a full interface to access individual vertices and edges. The labels of vertices and edges can be accessed both in their raw string form, and as their chemical counterpart (if they have one).

figure f

1.2 A.2 Graph Morphisms

Graph objects have methods for finding morphisms with the VF2 algorithms for isomorphism and monomorphism. We can therefore easily detect isomorphic graphs, count automorphisms, and search for substructures.

figure g

1.3 A.3 Rule Loading

Rules must be specified in GML format.

figure h

1.4 A.4 Rule Composition 1 — Unary Operators

Special rules can be constructed from graphs.

figure i

1.5 A.5 Rule Composition 2 — Parallel Composition

A pair of rules can be merged to a new rule implementing the parallel transformation.

figure j

1.6 A.6 Rule Composition 3 — Supergraph Composition

A pair of rules can (maybe) be composed using a supergraph relation.

figure k

1.7 A.7 Reaction Networks 1 — Rule Application

Transformation rules (reaction patterns) can be applied to graphs (molecules) to create new graphs (molecules). The transformations (reactions) implicitly form a directed (multi-)hypergraph (chemical reaction network).

figure l

1.8 A.8 Reaction Networks 2 — Repetition

A sub-strategy can be repeated.

figure m

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F. (2016). A Software Package for Chemically Inspired Graph Transformation. In: Echahed, R., Minas, M. (eds) Graph Transformation. ICGT 2016. Lecture Notes in Computer Science(), vol 9761. Springer, Cham. https://doi.org/10.1007/978-3-319-40530-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40530-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40529-2

  • Online ISBN: 978-3-319-40530-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics