Abstract
We present advances concerning efficient finite element assembly and linear solvers on current and upcoming HPC architectures obtained in the frame of the Exa-Dune project, part of the DFG priority program 1648 Software for Exascale Computing (SPPEXA). In this project, we aim at the development of both flexible and efficient hardware-aware software components for the solution of PDEs based on the DUNE platform and the FEAST library. In this contribution, we focus on node-level performance and accelerator integration, which will complement the proven MPI-level scalability of the framework. The higher-level aspects of the Exa-Dune project, in particular multiscale methods and uncertainty quantification, are detailed in the companion paper (Bastian et al., Advances concerning multiscale methods and uncertainty quantification in Exa-Dune. In: Proceedings of the SPPEXA Symposium, 2016).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82 (2–3), 121–138 (2008)
Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82 (2–3), 103–119 (2008)
Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Turek, S.: Advances concerning multiscale methods and uncertainty quantification in EXA-DUNE. In: Proceedings of the SPPEXA Symposium 2016. Lecture Notes in Computational Science and Engineering. Springer (2016)
Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke, J., Kaulmann, S., Müthing, S., Ribbrock, D.: EXA-DUNE: flexible PDE solvers, numerical methods and applications. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014 International Workshops, Porto, 25–26 Aug 2014, Revised Selected Papers, Part II. Lecture Notes in Computer Science, vol. 8806, pp. 530–541. Springer (2014)
Bröker, O., Grote, M.J.: Sparse approximate inverse smoothers for geometric and algebraic multigrid. Appl. Numer. Math. 41 (1), 61–80 (2002)
Choi, J., Singh, A., Vuduc, R.: Model-driven autotuning of sparse matrix-vector multiply on GPUs. In: Principles and Practice of Parallel Programming, pp. 115–126. ACM, New York (2010)
Engwer, C., Fahlke, J.: Scalable hybrid parallelization strategies for the DUNE grid interface. In: Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol. 103, pp. 583–590. Springer (2014)
Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29 (2), 235–256 (2009)
Fog, A.: VCL vector class library, http://www.agner.org/optimize
Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., Turek, S.: Towards a complete FEM-based simulation toolkit on GPUs: unstructured grid finite element geometric multigrid solvers with strong smoothers based on sparse approximate inverses. Comput. Fluids 80, 327–332 (2013)
Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18, 838–853 (1996)
Kretz, M., Lindenstruth, V.: Vc: A C++ library for explicit vectorization. Softw. Pract. Exp. 42 (11), 1409–1430 (2012)
Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data format for modern processors with wide SIMD units. SIAM J. Sci. Comput. 36 (5), C401–C423 (2014)
Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012)
Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast quadrature. Comput. Methods Appl. Mech. Eng. 190 (32–33), 4339–4364 (2001)
Müthing, S., Ribbrock, D., Göddeke, D.: Integrating multi-threading and accelerators into DUNE-ISTL. In: Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol. 103, pp. 601–609. Springer (2014)
Sawyer, W., Vanini, C., Fourestey, G., Popescu, R.: SPAI preconditioners for HPC applications. PAMM 12 (1), 651–652 (2012)
Turek, S., Göddeke, D., Becker, C., Buijssen, S., Wobker, S.: FEAST – realisation of hardware-oriented numerics for HPC simulations with finite elements. Concurr. Comput.: Pract. Exp. 22 (6), 2247–2265 (2010)
Acknowledgements
This research was funded by the DFG SPP 1648 Software for Exascale Computing.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bastian, P. et al. (2016). Hardware-Based Efficiency Advances in the EXA-DUNE Project. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-40528-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40526-1
Online ISBN: 978-3-319-40528-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)