Abstract
A self-bilinear map (SBM) is a bilinear map where source and target groups are identical. An SBM naturally yields a multilinear map, which has numerous applications in cryptography. In spite of its usefulness, there is known a strong negative result on the existence of an ideal SBM. On the other hand, Yamakawa et al. (CRYPTO’14) introduced the notion of a self-bilinear map with auxiliary information (AI-SBM), which is a weaker variant of SBM and constructed it based on the factoring assumption and an indistinguishability obfuscation (\(i\mathcal {O}\)). In their work, they proved that their AI-SBM satisfies the Auxiliary Information Multilinear Computational Diffie-Hellman (AI-MCDH) assumption, which is a natural analogue of the Multilinear Computational Diffie-Hellman (MCDH) assumption w.r.t. multilinear maps. Then they show that they can replace multilinear maps with AI-SBMs in some multilinear-map-based primitives that is proven secure under the MCDH assumption.
In this work, we further investigate what hardness assumptions hold w.r.t. their AI-SBM. Specifically, we introduce a new hardness assumption called the Auxiliary Information Generalized Multilinear Diffie-Hellman (AI-GMDH) assumption. The AI-GMDH is parameterized by some parameters and thus can be seen as a family of hardness assumptions. We give a sufficient condition of parameters for which the AI-GMDH assumption holds under the same assumption as in the previous work. Based on this result, we can easily prove the AI-SBM satisfies certain hardness assumptions including not only the AI-GMDH assumption but also more complicated assumptions. This enable us to convert a multilinear-map-based primitive that is proven secure under a complicated hardness assumption to AI-SBP-based (and thus the factoring and \(i\mathcal {O}\)-based) one. As an example, we convert Catalano et al.’s multilinear-map-based homomorphic signatures (CRYPTO’14) to AI-SBP-based ones.
The first author is supported by a JSPS Fellowship for Young Scientists.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Actually in [29], this assumption is called Multilinear Computational Diffie-Hellman with Auxiliary Information (MCDHAI) assumption. We rename the assumption for the consistency with other assumptions in this paper.
- 2.
- 3.
- 4.
Note that actually not all of these elements are needed to evaluate the map \(e_n\).
- 5.
There is flexibility for the definition of the canonical circuit. However, any definition works if the size of \(\tilde{C}_{N,x}\) is polynomially bounded in \(\lambda \) and |x|.
- 6.
The actual presentation is slightly modified due to the modification of the definition.
References
Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear maps from obfuscation. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 446–473. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9_19
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)
Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)
Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemporary Mathematics 324, 71–90 (2002)
Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014)
Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)
Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_20
Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)
Cheon, J.H., Lee, D.H.: A note on self-bilinear maps. Bull. Korean Math. Soc. 46(2), 303–309 (2009)
Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)
Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. CRYPTO 1, 267–286 (2015)
Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)
Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)
Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015)
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC 2015, 469–477 (2015)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)
Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)
Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_21
Lee, C., Cheon, J.H., Jeong, J.: An algorithm for ntru problems and cryptanalysis of the ggh multilinear map without an encoding of zero. Cryptology ePrint Archive, Report 2016/139 (2016). http://eprint.iacr.org/
Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over ggh13. Cryptology ePrint Archive, Report 2016/147 (2016). http://eprint.iacr.org/
Paneth, O., Sahai, A.: On the equivalence of obfuscation and multilinear maps. Cryptology ePrint Archive, Report 2015/791 (2015). http://eprint.iacr.org/
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
Xie, X., Xue, R.: Bounded fully homomorphic signature schemes. Cryptology ePrint Archive, Report 2014/420 (2014). http://eprint.iacr.org/
Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on unknown order groups from indistinguishability obfuscation and its applications. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 90–107. Springer, Heidelberg (2014)
Acknowledgment
We would like to thank the anonymous reviewers of ACISP 2016 and members of the study group “Shin-Akarui-Angou-Benkyou-Kai” for their helpful comments. This work was supported by CREST, JST and JSPS KAKENHI Grant Number 14J03467.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Yamakawa, T., Hanaoka, G., Kunihiro, N. (2016). Generalized Hardness Assumption for Self-bilinear Map with Auxiliary Information. In: Liu, J., Steinfeld, R. (eds) Information Security and Privacy. ACISP 2016. Lecture Notes in Computer Science(), vol 9723. Springer, Cham. https://doi.org/10.1007/978-3-319-40367-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-40367-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40366-3
Online ISBN: 978-3-319-40367-0
eBook Packages: Computer ScienceComputer Science (R0)