Abstract
This paper provides a comprehensive overview of the state-of-the-art for processing large-scale 3D point cloud based on optical acquisition. We first summarize the general pipeline of point cloud processing, ranging from filtering to the final reconstruction, and give further detailed introduction. On this basis we give a general insight over the previous and latest methods applying LIDAR and remote sensing techniques as well as Kinect on analysis techniques, including urban environment and cluttered indoor scene. We also focus on the various approaches of 3D laser scenes scanning. The goal of the paper is to provide a comprehensive understanding on the point cloud reconstruction methods based on 3D laser scanning techniques, and make forecasts for future research issues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, vol. 47, pp. 1–4 (2011)
Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. (TOG) 32(4), 113 (2013)
Sohn, G., Dowman, I.J.: Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 34(3/A), 336–344 (2002)
Brovelli, M.A., Cannata, M., Longoni, U.M.: Managing and processing LIDAR data within GRASS. In: Proceedings of the GRASS Users Conference, vol. 29, September 2002
Sithole, G., Vosselman, G.: Filtering of airborne laser scanner data based on segmented point clouds. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 36(Part 3), W19 (2005)
Kim, K., Kim, J.: Dynamic displacement measurement of a vibratory object using a terrestrial laser scanner. Measur. Sci. Technol. 26(4), 45002–45012 (2015)
Gumhold, S., Wang, X., MacLeod, R.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable, vol. 2001, October 2001
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3212–3217. IEEE, May 2009
Rabbani, T., van Den Heuvel, F., Vosselmann, G.: Segmentation of point clouds using smoothness constraint. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 36(5), 248–253 (2006)
Sappa, A.D., Devy, M.: Fast range image segmentation by an edge detection strategy. In: Third International Conference on 3-D Digital Imaging and Modeling, Proceedings, pp. 292–299. IEEE (2001)
Byun, J., Na, K.I., Seo, B.S., et al.: Drivable road detection with 3D point clouds based on the MRF for intelligent vehicle. In: Mejias, L., Corke, P., Roberts, J. (eds.) Field and Service Robotics. STAR, vol. 105, pp. 49–60. Springer, Heidelberg (2015)
Volk, R., Stengel, J., Schultmann, F.: Building information modeling (BIM) for existing buildings — literature review and future needs. Autom. Constr. 38(5), 109–127 (2014)
Xiang, R., Wang, R.: Range image segmentation based on split-merge clustering. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 614–617. IEEE, August 2004
Vosselman, G.: Advanced point cloud processing. In: Photogrammetric Week, vol. 9, pp. 137–146 (2009)
Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: ACM Trans. Graph. 28, 176 (2009)
Miao, Y., Diaz-Gutierrez, P., Pajarola, R., Gopi, M., Feng, J.: In: IEEE SMI, vol. 28 (2009)
Öztireli, A.C., Guennebaud, G., Gross, M.: Comput. Graph. Forum 28, 493 (2009)
Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., Zhang, H.R.: Edge-aware point set resampling. ACM Trans. Graph. (TOG) 32(1), 9 (2013)
Lafarge, F., Keriven, R., Brédif, M., Vu, H.: A hybrid multi-view stereo algorithm for modeling urban scenes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35(1) (2013)
Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32(1), 5 (2013)
Saftly, W., Baes, M., Camps, P.: Hierarchical octree and kd tree grids for 3D radiative transfer simulations (2013). arXiv preprint arXiv:1311.0705
Díaz-Más, L., Madrid-Cuevas, F.J., Muñoz-Salinas, R., Carmona-Poyato, A., Medina-Carnicer, R.: An octree-based method for shape from inconsistent silhouettes. Pattern Recogn. 45(9), 3245–3255 (2012)
Rutzinger, M., Elberink, S.O., Pu, S., Vosselman, G.: Automatic extraction of vertical walls from mobile and airborne laser scanning data. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 38(Part 3), W8 (2009)
Poullis, C., You, S.: Automatic reconstruction of cities from remote sensor data. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2775–2782. IEEE, June 2009
Zhou, Q.Y., Neumann, U.: 2.5D dual contouring: a robust approach to creating building models from aerial lidar point clouds. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision –ECCV 2010. LNCS, vol. 6313, pp. 115–128. Springer, Heidelberg (2010)
Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N.J., Cohen-Or, D., Chen, B.: Non-local scan consolidation for 3D urban scenes. ACM Trans. Graph.-TOG 29(4), 94 (2010)
Fu, W., Zhang, L., Li, H., Zhang, X., Wu, D.: Efficient 3D Reconstruction for urban scenes. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 546–555. Springer, Heidelberg (2013)
Lafarge, F., Mallet, C.: Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation. Int. J. Comput. Vis. 99(1), 69–85 (2012)
Müller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. ACM Trans. Graph. 26(3), 85 (2007)
Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., Chen, B.: SmartBoxes for interactive urban reconstruction. ACM Trans. Graph. (TOG) 29(4), 93 (2010)
Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., Liu, L., Yang, R.: Semantic decomposition and reconstruction of residential scenes from LiDAR data. In: ACM Transactions on Graphics, Proceedings of SIGGRAPH 2013, vol. 32, no. 4 (2013)
Zhou, Q.Y., Neumann, U.: A streaming framework for seamless building reconstruction from large-scale aerial lidar data. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2759–2766. IEEE, June 2009
Secord, J., Zakhor, A.: Tree detection in urban regions using aerial lidar and image data. Geosci. Remote Sens. Lett. IEEE 4(2), 196–200 (2007)
Vanegas, C.A., Aliaga, D.G., Benes, B.: Automatic extraction of manhattan-world building masses from 3D laser range scans. IEEE Trans. Vis. Comput. Graph. 18(10), 1627–1637 (2012)
Matei, B.C., Sawhney, H.S., Samarasekera, S., Kim, J., Kumar, R.: Building segmentation for densely built urban regions using aerial lidar data. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, June 2008
Coughlan, J.M., Yuille, A.L.: The Manhattan world assumption: regularities in scene statistics which enable Bayesian inference. In: NIPS, pp. 845–851, December 2000
Verma, V., Kumar, R., Hsu, S.: 3D building detection and modeling from aerial lidar data. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2213–2220. IEEE (2006)
Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Building reconstruction from a single DEM. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, June 2008. (You, S., Hu, J., Neumann, U., Fox, P.: ICCSA, p. 579 (2003))
Zebedin, L., Bauer, J., Karner, K., Bischof, H.: Fusion of feature- and area-based information for urban buildings modeling from aerial imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 873–886. Springer, Heidelberg (2008)
Tse, R., Gold, C., Kidner, D.: Using the delaunay triangulation/voronoi diagram to extract building information from raw lidar data. In: 4th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2007, pp. 222–229. IEEE, July 2007. (Toshev, A., Mordohai, P., Taskar, B.: IEEE CVPR, p. 398 (2010))
Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. (TOG) 26(4), 19 (2007)
Li, H., Zhang, X., Jaeger, M., Constant, T.: Segmentation of forest terrain laser scan data. In: Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 47–54. ACM, December 2010
Nan, L., Xie, K., Sharf, A.: A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. (TOG) 31(6), 137 (2012)
Hedau, V., Hoiem, D., Forsyth, D.: Thinking inside the box: using appearance models and context based on room geometry. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 224–237. Springer, Heidelberg (2010)
Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 601–608. IEEE, November 2011
Lee, D.C., Gupta, A., Hebert, M., Kanade, T.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: NIPS, vol. 1, no. 2, p. 3, November 2010
Gupta, A., Efros, A.A., Hebert, M.: Blocks world revisited: image understanding using qualitative geometry and mechanics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 482–496. Springer, Heidelberg (2010)
Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. (TOG) 29(6), 184 (2010)
Mitra, N.J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L.J., Pottmann, H.: Dynamic geometry registration. In: Symposium on Geometry Processing, pp. 173–182, July 2007
Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., Xiong, Y.: Photo-inspired model-driven 3D object modeling. In: ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 80. ACM, August 2011
Xiang, Y., Savarese, S.: Estimating the aspect layout of object categories. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3410–3417. IEEE, June 2012
Zheng, Y., Chen, X., Cheng, M.M., Zhou, K., Hu, S.M., Mitra, N.J.: Interactive images: cuboid proxies for smart image manipulation. ACM Trans. Graph. (TOG) 31(4), 99 (2012)
Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 438–446. ACM, July 2002
Kim, Y. M., Mitra, N.J., Huang, Q., Guibas, L.: Guided real - time scanning of indoor objects. In: Computer Graphics Forum, vol. 32, no. 7, pp. 177–186, October 2013
Thrun, S., Wegbreit, B.: Shape from symmetry. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1824–1831. IEEE, October 2005
Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3D geometry: extraction and applications. In: Computer Graphics Forum. Blackwell Publishing Ltd., Hoboken, February 2013
Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point - cloud shape detection. In: Computer Graphics Forum, vol. 26, no. 2, pp. 214–226. Blackwell Publishing Ltd., Hoboken, June 2007
Jain, A., Thormählen, T., Ritschel, T., Seidel, H.P.: Exploring shape variations by 3D - model decomposition and part - based recombination. In: Computer Graphics Forum, vol. 31, no. 2pt3, pp. 631–640. Blackwell Publishing Ltd., Hoboken, May 2012
Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M.: Interactive 3D architectural modeling from unordered photo collections. In: ACM Transactions on Graphics (TOG), vol. 27, no. 5, p. 159. ACM, December 2008
Schnabel, R., Degener, P., Klein, R.: Completion and reconstruction with primitive shapes. In: Computer Graphics Forum, vol. 28, no. 2, pp. 503–512. Blackwell Publishing Ltd., Hoboken, April 2009
Demisse, G.G., Borrmann, D., Nüchter, A.: Interpreting thermal 3D models of indoor environments for energy efficiency. J. Intell. Robot. Syst. 77(1), 55–72 (2015)
Anguelov, D., Taskarf, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.: Discriminative learning of markov random fields for segmentation of 3D scan data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 169–176. IEEE, June 2005
Recognition of 3D point clouds in urban environments. In: Computer Vision. IEEE (2009)
Acknowledgments
This work is supported in part by the National High-Tech Research and Development Program of China (863 Program) with No. 2015AA016402, and in part by National Natural Science Foundation of China with Nos. 61571439, 61561003,61372190, and 61271431.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, X., Meng, W., Guo, J., Zhang, X. (2016). A Survey on Processing of Large-Scale 3D Point Cloud. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds) E-Learning and Games. Edutainment 2016. Lecture Notes in Computer Science(), vol 9654. Springer, Cham. https://doi.org/10.1007/978-3-319-40259-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-40259-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40258-1
Online ISBN: 978-3-319-40259-8
eBook Packages: Computer ScienceComputer Science (R0)