Abstract
We focus in this survey on effectiveness issues for S-adic subshifts and tilings. An S-adic subshift or tiling space is a dynamical system obtained by iterating an infinite composition of substitutions, where a substitution is a rule that replaces a letter by a word (that might be multi-dimensional), or a tile by a finite union of tiles. Several notions of effectiveness exist concerning S-adic subshifts and tiling spaces, such as the computability of the sequence of iterated substitutions, or the effectiveness of the language. We compare these notions and discuss effectiveness issues concerning classical properties of the associated subshifts and tiling spaces, such as the computability of shift-invariant measures and the existence of local rules (soficity). We also focus on planar tilings.
This work was supported by ANR DynA3S and QuasiCool. We would like to thank warmly the anonymous referees, M. Rigo and F. Durand for their useful comments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8, 181–207 (2001)
Aubrun, N., Sablik, M.: Multidimensional effective S-adic systems are sofic. Distrib. Theor. 9, 7–29 (2014)
Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Mathematicae 126, 35–63 (2013)
Baake, M., Grimm, U.: Aperiodic Order: A Mathematical Invitation, vol. 1. Cambridge University Press, Cambridge (2013)
Bédaride, N., Fernique, T.: No weak local rules for the \(4p\)-fold tilings. Disc. Comput. Geom. 54, 980–992 (2015)
Bédaride, N., Fernique, T.: When periodicities enforce aperiodicity. Commun. Math. Phys. 335, 1099–1120 (2015)
Bell, J.P., Charlier, E., Fraenkel, A.S., Rigo, M.: A decision problem for ultimately periodic sets in non-standard numeration systems. Int. J. Algebra Comput. 9, 809–839 (2009)
Berger, R.: The Undecidability of the Domino Problem, vol. 66. Memoirs of the American Mathematical Society, Providence (1966)
Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: S-adic expansions, RIMS Lecture note ‘Kokyuroku Bessatu’ B46, pp. 81–123 (2014)
Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press, Cambridge (2010)
Berthé, V., Rigo, M. (eds.): Combinatorics, Words and Symbolic dynamics, Encyclopedia of Mathematics and its Applications, vol. 159. Cambridge University Press, Cambridge (2016)
Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223, 27–53 (2000)
Berthé, V., Bourdon, J., Jolivet, T., Siegel, A.: Generating discrete planes with substitutions. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 58–70. Springer, Heidelberg (2013)
Bienvenu, L., Day, A.R., Hoyrup, M., Mezhirov, I., Shen, A.: A constructive version of Birkhoff’s ergodic theorem for Martin-Löf random points. Inf. Comput. 210, 21–30 (2012)
Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and \(p\)-recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 12, 191–238. Correction to: “Logic and \(p\)-recognizable sets of integers”. Bull. Belg. Math. Soc. Simon Stevin 14, 577 (1994)
Charlier, E., Kärki, T., Rigo, M.: Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discrete Math. 310, 1238–1252 (2010)
Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Int. J. Found. Comput. Sci. 23, 1035–1066 (2012)
de Bruijn, N.G.: Algebraic theory of Penrose’s nonperiodic tilings of the plane. Nederl. Akad. Wetensch. Indag. Math. 43, 39–66 (1981)
Durand, B., Romashchenko, A.E., Shen, A.: Effective closed subshifts in 1D can be implemented in 2D. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 208–226. Springer, Heidelberg (2010)
Durand, F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theor. Dynam. Syst. 20, 1061–1078. Corrigendum and addendum, Ergodic Theor. Dynam. Syst. 23, 663–669 (2003)
Durand, F.: HD0L \(\omega \)-equivalence and periodicity problems in the primitive case. Unif. Distrib. Theor. 7(1), 199–215 (2012)
Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO - Theor. Inf. Appl. 47, 201–214 (2013)
Durand, F.: Decidability of uniform recurrence of morphic sequences. Int. J. Found. Comput. Sci. 24, 123–146 (2013)
Durand, F., Host, B., Skau, C.: Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergodic Theor. Dyn. Syst. 19(4), 953–993 (1999)
Fernique, T.: Local rule substitutions and stepped surfaces. Theor. Comput. Sci. 380, 317–329 (2007)
Fernique, T., Ollinger, N.: Combinatorial substitutions and sofic tilings. In: JAC (2010)
Fernique, T., Sablik, M.: Local rules for computable planar tilings automata. In: JAC (2012)
Frank, N.P.: A primer of substitution tilings of the Euclidean plane. Expo. Math. 26, 295–326 (2008)
Frank, N.P., Sadun, L.: Fusion: a general framework for hierarchical tilings of Rd. Geom. Dedicata. 171, 149–186 (2014)
Gangloff, S., de Menibus, B.H.: Computing the entropy of one-dimensional decidable subshifts. arXiv:1602.06166
Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147, 181–223 (1998)
Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3, 827–864 (1992)
Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Inventiones Mathematicae 176, 131–167 (2009)
Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171, 2011–2038 (2010)
Galatolo, S., Hoyrup, M., Rojas, C.: Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inf. Comput. 208, 23–41 (2010)
Le, T.Q.T.: Local rules for quasiperiodic tilings. In: The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 489, pp. 331–366. Kluwer Academic Publisher, Dordrecht (1997)
Levitov, L.S.: Local rules for quasicrystals. Commun. Math. Phys. 119, 627–666 (1988)
Mozes, S.: Tilings, substitution systems and dynamical systems generated by them. J. d’analyse mathématique 53, 139–186 (1989)
Priebe, N.M.: Towards a characterization of self-similar tilings in terms of derived Vorono tessellations. Geom. Dedicata. 79, 239–265 (2000)
Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)
Rigo, M.: Formal Languages, Automata and Numeration Systems. Wiley, Hoboken (2014)
Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer, Heidelberg (2013)
Socolar, J.E.S.: Weak matching rules for quasicrystals. Commun. Math. Phys. 129, 599–619 (1990)
V’yugin, V.V.: Effective convergence in probability, and an ergodic theorem for individual random sequences. Theor. Probab. Appl. 42, 42–50 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Berthé, V., Fernique, T., Sablik, M. (2016). Effective S-adic Symbolic Dynamical Systems. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-40189-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40188-1
Online ISBN: 978-3-319-40189-8
eBook Packages: Computer ScienceComputer Science (R0)