Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective S-adic Symbolic Dynamical Systems

  • Conference paper
  • First Online:
Pursuit of the Universal (CiE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9709))

Included in the following conference series:

Abstract

We focus in this survey on effectiveness issues for S-adic subshifts and tilings. An S-adic subshift or tiling space is a dynamical system obtained by iterating an infinite composition of substitutions, where a substitution is a rule that replaces a letter by a word (that might be multi-dimensional), or a tile by a finite union of tiles. Several notions of effectiveness exist concerning S-adic subshifts and tiling spaces, such as the computability of the sequence of iterated substitutions, or the effectiveness of the language. We compare these notions and discuss effectiveness issues concerning classical properties of the associated subshifts and tiling spaces, such as the computability of shift-invariant measures and the existence of local rules (soficity). We also focus on planar tilings.

This work was supported by ANR DynA3S and QuasiCool. We would like to thank warmly the anonymous referees, M. Rigo and F. Durand for their useful comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8, 181–207 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Aubrun, N., Sablik, M.: Multidimensional effective S-adic systems are sofic. Distrib. Theor. 9, 7–29 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Mathematicae 126, 35–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baake, M., Grimm, U.: Aperiodic Order: A Mathematical Invitation, vol. 1. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  5. Bédaride, N., Fernique, T.: No weak local rules for the \(4p\)-fold tilings. Disc. Comput. Geom. 54, 980–992 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bédaride, N., Fernique, T.: When periodicities enforce aperiodicity. Commun. Math. Phys. 335, 1099–1120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bell, J.P., Charlier, E., Fraenkel, A.S., Rigo, M.: A decision problem for ultimately periodic sets in non-standard numeration systems. Int. J. Algebra Comput. 9, 809–839 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berger, R.: The Undecidability of the Domino Problem, vol. 66. Memoirs of the American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  9. Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: S-adic expansions, RIMS Lecture note ‘Kokyuroku Bessatu’ B46, pp. 81–123 (2014)

    Google Scholar 

  10. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  11. Berthé, V., Rigo, M. (eds.): Combinatorics, Words and Symbolic dynamics, Encyclopedia of Mathematics and its Applications, vol. 159. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  12. Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223, 27–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berthé, V., Bourdon, J., Jolivet, T., Siegel, A.: Generating discrete planes with substitutions. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 58–70. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Bienvenu, L., Day, A.R., Hoyrup, M., Mezhirov, I., Shen, A.: A constructive version of Birkhoff’s ergodic theorem for Martin-Löf random points. Inf. Comput. 210, 21–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and \(p\)-recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 12, 191–238. Correction to: “Logic and \(p\)-recognizable sets of integers”. Bull. Belg. Math. Soc. Simon Stevin 14, 577 (1994)

    Google Scholar 

  16. Charlier, E., Kärki, T., Rigo, M.: Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discrete Math. 310, 1238–1252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Int. J. Found. Comput. Sci. 23, 1035–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Bruijn, N.G.: Algebraic theory of Penrose’s nonperiodic tilings of the plane. Nederl. Akad. Wetensch. Indag. Math. 43, 39–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durand, B., Romashchenko, A.E., Shen, A.: Effective closed subshifts in 1D can be implemented in 2D. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 208–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Durand, F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theor. Dynam. Syst. 20, 1061–1078. Corrigendum and addendum, Ergodic Theor. Dynam. Syst. 23, 663–669 (2003)

    Google Scholar 

  21. Durand, F.: HD0L \(\omega \)-equivalence and periodicity problems in the primitive case. Unif. Distrib. Theor. 7(1), 199–215 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO - Theor. Inf. Appl. 47, 201–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Durand, F.: Decidability of uniform recurrence of morphic sequences. Int. J. Found. Comput. Sci. 24, 123–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Durand, F., Host, B., Skau, C.: Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergodic Theor. Dyn. Syst. 19(4), 953–993 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernique, T.: Local rule substitutions and stepped surfaces. Theor. Comput. Sci. 380, 317–329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fernique, T., Ollinger, N.: Combinatorial substitutions and sofic tilings. In: JAC (2010)

    Google Scholar 

  27. Fernique, T., Sablik, M.: Local rules for computable planar tilings automata. In: JAC (2012)

    Google Scholar 

  28. Frank, N.P.: A primer of substitution tilings of the Euclidean plane. Expo. Math. 26, 295–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Frank, N.P., Sadun, L.: Fusion: a general framework for hierarchical tilings of Rd. Geom. Dedicata. 171, 149–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gangloff, S., de Menibus, B.H.: Computing the entropy of one-dimensional decidable subshifts. arXiv:1602.06166

  31. Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147, 181–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3, 827–864 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Inventiones Mathematicae 176, 131–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171, 2011–2038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Galatolo, S., Hoyrup, M., Rojas, C.: Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inf. Comput. 208, 23–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Le, T.Q.T.: Local rules for quasiperiodic tilings. In: The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 489, pp. 331–366. Kluwer Academic Publisher, Dordrecht (1997)

    Google Scholar 

  37. Levitov, L.S.: Local rules for quasicrystals. Commun. Math. Phys. 119, 627–666 (1988)

    Article  MathSciNet  Google Scholar 

  38. Mozes, S.: Tilings, substitution systems and dynamical systems generated by them. J. d’analyse mathématique 53, 139–186 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Priebe, N.M.: Towards a characterization of self-similar tilings in terms of derived Vorono tessellations. Geom. Dedicata. 79, 239–265 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rigo, M.: Formal Languages, Automata and Numeration Systems. Wiley, Hoboken (2014)

    Book  MATH  Google Scholar 

  42. Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  43. Socolar, J.E.S.: Weak matching rules for quasicrystals. Commun. Math. Phys. 129, 599–619 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. V’yugin, V.V.: Effective convergence in probability, and an ergodic theorem for individual random sequences. Theor. Probab. Appl. 42, 42–50 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Berthé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Berthé, V., Fernique, T., Sablik, M. (2016). Effective S-adic Symbolic Dynamical Systems. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40189-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40188-1

  • Online ISBN: 978-3-319-40189-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics