Nothing Special   »   [go: up one dir, main page]

Skip to main content

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations with Distributed Arrays

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2016)

Abstract

Multi-agent systems allow the modelling of complex, heterogeneous, and distributed systems in a realistic way. MARL-Ped is a multi-agent system tool, based on the MPI standard, for the simulation of different scenarios of pedestrians who autonomously learn the best behavior by Reinforcement Learning. MARL-Ped uses one MPI process for each agent by design, with a fixed fine-grain granularity. This requirement limits the performance of the simulations for a restricted number of processors that is lesser than the number of agents. On the other hand, Hitmap is a library to ease the programming of parallel applications based on distributed arrays. It includes abstractions for the automatic partition and mapping of arrays at runtime with arbitrary granularity, as well as functionalities to build flexible communication patterns that transparently adapt to the data partitions.

In this work, we present the methodology and techniques of granularity selection in Hitmap, applied to the simulations of agent systems. As a first approximation, we use the MARL-Ped multi-agent pedestrian simulation software as a case of study for intra-node cases. Hitmap allows to transparently map agents to processes, reducing oversubscription and intra-node communication overheads. The evaluation results show significant advantages when using Hitmap, increasing the flexibility, performance, and agent-number scalability for a fixed number of processing elements, allowing a better exploitation of isolated nodes.

A. Gonzalez-Escribano—This work has been funded by Spanish MINECO and the EU ERDF program under grants HomProg-HetSys TIN2014-58876-P, TIN2015-66972-C5-5-R, CAPAP-H5 network TIN2014-53522-REDT, and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bharambe, A., Pang, J., Seshan, S.: Colyseus: a distributed architecture for online multiplayer games. In: NSDI 2006: Proceedings of the 3rd conference on Networked Systems Design and Implementation, p. 12. USENIX Association, Berkeley, CA, USA (2006)

    Google Scholar 

  2. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B: Methodological 35(3), 293–312 (2001)

    Article  Google Scholar 

  3. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

    Article  Google Scholar 

  4. Chen, Y., Cui, X., Mei, H.: Parray: A unifying array representation for heterogeneous parallelism. SIGPLAN Not. 47(8), 171–180 (2012)

    Article  Google Scholar 

  5. Fraguela, B.B., Bikshandi, G., Guo, J., GarzaráN, M.J., Padua, D., Von Praun, C.: Optimization techniques for efficient hta programs. Parallel Comput. 38(9), 465–484 (2012)

    Article  Google Scholar 

  6. Fresno, J., Gonzalez-Escribano, A., Llanos, D.: Blending extensibility and performance in dense and sparse parallel data management. IEEE Trans. Parallel Distrib. Syst. 25(10), 2509–2519 (2014)

    Article  Google Scholar 

  7. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.: An extensible system for multilevel automatic data partition and mapping. IEEE Trans. Parallel Distrib. Syst. 25(5), 1145–1154 (2014)

    Article  Google Scholar 

  8. Gonzalez-Escribano, A., Llanos, D.R.: Trasgo: a nested-parallel programming system. J. Supercomput. 58(2), 226–234 (2011)

    Article  Google Scholar 

  9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  10. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mallón, D.A., Gómez, A., Mouriño, J.C., Taboada, G.L., Teijeiro, C., Touriño, J., Fraguela, B.B., Doallo, R., Wibecan, B.: Upc performance evaluation on a multicore system. In: Proceedings of the Third Conference on Partitioned Global Address Space Programing Models, pp. 9: 1–9: 7. PGAS 2009, NY, USA. ACM, New York (2009)

    Google Scholar 

  12. Martinez-Gil, F., Lozano, M., Fernández, F.: Multi-agent reinforcement learning for simulating pedestrian navigation. In: Vrancx, P., Knudson, M., Grześ, M. (eds.) ALA 2011. LNCS (LNAI), vol. 7113, pp. 54–69. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28499-1_4

    Chapter  Google Scholar 

  13. Martinez-Gil, F., Lozano, M., Fernández, F.: MARL-ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups. Simul. Model. Pract. Theor. 47, 259–275 (2014)

    Article  Google Scholar 

  14. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers Conference, pp. 763–782. Miller Freeman Game Group, San Francisco, California (1999)

    Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Vigueras, G., Orduña, J.M., Lozano, M.: A read-copy update based parallel server for distributed crowd simulations. J. Supercomput. 64(1), 156–166 (2013)

    Article  Google Scholar 

  17. Wooldridge, M.: Multi-Agent Systems. Intelligent Agents. MIT Press, Cambridge (2013)

    Google Scholar 

  18. Wooldridge, M., Jennings, N.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 115–152 (1995)

    Article  Google Scholar 

  19. Yilmaz, E., Isler, V., Cetin, Y.Y.: The virtual marathon: Parallel computing supports crowd simulations. IEEE Comput. Graph. Appl. 29(4), 26–33 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Rodriguez-Gutiez , Francisco Martinez-Gil , Juan Manuel Orduña or Arturo Gonzalez-Escribano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Rodriguez-Gutiez, E., Martinez-Gil, F., Orduña, J.M., Gonzalez-Escribano, A. (2016). MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations with Distributed Arrays. In: Carretero, J., et al. Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science(), vol 10049. Springer, Cham. https://doi.org/10.1007/978-3-319-49956-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49956-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49955-0

  • Online ISBN: 978-3-319-49956-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics