Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intelligent SPARQL Endpoints: Optimizing Execution Performance by Automatic Query Relaxation and Queue Scheduling

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10048))

  • 1814 Accesses

Abstract

The Web of Data is widely considered as one of the major global repositories populated with countless interconnected and structured data prompting these linked datasets to be continuously and sharply increasing. In this context the so-called SPARQL Protocol and RDF Query Language is commonly used to retrieve and manage stored data by means of SPARQL endpoints, a query processing service especially designed to get access to these databases. Nevertheless, due to the large amount of data tackled by such endpoints and their structural complexity, these services usually suffer from severe performance issues, including inadmissible processing times. This work aims at overcoming this noted inefficiency by designing a distributed parallel system architecture that improves the performance of SPARQL endpoints by incorporating two functionalities: (1) a queuing system to avoid bottlenecks during the execution of SPARQL queries; and (2) an intelligent relaxation of the queries submitted to the endpoint at hand whenever the relaxation itself and the consequently lowered complexity of the query are beneficial for the overall performance of the system. To this end the system relies on a two-fold optimization criterion: the minimization of the query running time, as predicted by a supervised learning model; and the maximization of the quality of the results of the query as quantified by a measure of similarity. These two conflicting optimization criteria are efficiently balanced by two bi-objective heuristic algorithms sequentially executed over groups of SPARQL queries. The approach is validated on a prototype and several experiments that evince the applicability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact there have been controversial discussions lately around the originality of the naïve HS algorithm in regards to its close resemblance to the more traditional \((\mu + 1)\) Evolution Strategies. Having said this, foregoing algorithmic descriptions will use the HS terminology impartially with respect to the aforementioned controversy.

References

  1. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)

    Article  Google Scholar 

  2. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: ACM International Conference on Database Theory, pp. 4–33 (2010)

    Google Scholar 

  3. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson, D.: Predicting multiple metrics for queries: better decisions enabled by machine learning. In: IEEE International Conference on Data Engineering, pp. 592–603 (2009)

    Google Scholar 

  4. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query performance modeling and prediction. In: IEEE International Conference on Data Engineering, pp. 390–401 (2012)

    Google Scholar 

  5. Hasan, R., Gandon, F.: A machine learning approach to SPARQL query performance prediction. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, vol. 1, pp. 266–273 (2014)

    Google Scholar 

  6. Görlitz, O., Staab, S.: Splendid: SPARQL endpoint federation exploiting void descriptions. In: COLD, vol. 782 (2011)

    Google Scholar 

  7. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_38

    Chapter  Google Scholar 

  8. Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: a SPARQL optimization approach based on triple pattern selectivity estimation. Technical report ifi-2007.03, University of Zurich (2007)

    Google Scholar 

  9. Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P: Heuristics-based query optimisation for SPARQL. In: ACM International Conference on Extending Database Technology, pp. 324–335 (2012)

    Google Scholar 

  10. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join ordering in SPARQL queries. In: EDBT, pp. 439–450 (2014)

    Google Scholar 

  11. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: ACM International Conference on World Wide Web, pp. 595–604 (2008)

    Google Scholar 

  12. Bicer, V., Tran, T., Gossen, A.: Relational kernel machines for learning from graph-structured RDF data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 47–62. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21034-1_4

    Chapter  Google Scholar 

  13. Yamagata, Y., Fukuta, N.: An approach to dynamic query classification and approximation on an inference-enabled SPARQL endpoint. J. Inf. Process. 23(6), 759–766 (2015)

    Google Scholar 

  14. Maali, F., Hassan, I.A., Decker, S.: Scheduling for SPARQL endpoints. In: International Semantic Web Conference, pp. 19–28 (2014)

    Google Scholar 

  15. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL benchmark – performance assessment with real queries on real data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_29

    Chapter  Google Scholar 

  16. Robertson, S.: Understanding inverse document frequency: on theoretical arguments for IDF. J. Documentation 60(5), 503–520 (2004)

    Article  Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trillo, R., Gracia, J., Espinoza, M., Mena, E.: Discovering the semantics of user keywords. J. Univ. Comput. Sci. 13(12), 1908–1935 (2007)

    Google Scholar 

  19. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multi. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  21. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  22. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)

    Article  Google Scholar 

  23. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    Article  MATH  Google Scholar 

  24. Pirró, G., Euzenat, J.: A feature and information theoretic framework for semantic similarity and relatedness. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 615–630. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17746-0_39

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Torre-Bastida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Torre-Bastida, A.I., Villar-Rodriguez, E., Bilbao, M.N., Del Ser, J. (2016). Intelligent SPARQL Endpoints: Optimizing Execution Performance by Automatic Query Relaxation and Queue Scheduling. In: Carretero, J., Garcia-Blas, J., Ko, R., Mueller, P., Nakano, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science(), vol 10048. Springer, Cham. https://doi.org/10.1007/978-3-319-49583-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49583-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49582-8

  • Online ISBN: 978-3-319-49583-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics