Abstract
Spectral clustering has recently become one of the most popular modern clustering algorithms for traditional data. However, the application of this clustering method on geostatistical data produces spatially scattered clusters, which is undesirable for many geoscience applications. In this work, we develop a spectral clustering method aimed to discover spatially contiguous and meaningful clusters in multivariate geostatistical data, in which spatial dependence plays an important role. The proposed spectral clustering method relies on a similarity measure built from a non-parametric kernel estimator of the multivariate spatial dependence structure of the data, emphasizing the spatial correlation among data locations. The capability of the proposed spectral clustering method to provide spatially contiguous and meaningful clusters is illustrated using the European Geological Surveys Geochemical database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allard, D.: Geostatistical classification and class kriging. J. Geog. Inf. Decis. Anal. 2, 87–101 (1998)
Allard, D., Guillot, G.: Clustering geostatistical data. In: Proceedings of the Sixth Geostatistical Conference (2000)
Allard, D., Monestiez, P.: Geostatistical segmentation of rainfall data. In: geoENV II: Geostatistics for Environmental Applications, pp. 139–150 (1999)
Ambroise, C., Dang, M., Govaert, G.: Clustering of spatial data by the EM algorithm. In: geoENV I: Geostatistics for Environmental Applications, pp. 493–504 (1995)
Bourgault, G., Marcotte, D., Legendre, P.: The multivariate (co)variogram as a spatial weighting function in classification methods. Math. Geol. 24(5), 463–478 (1992)
Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974)
Cao, Y., Chen, D.R.: Consistency of regularized spectral clustering. Appl. Comput. Harmonic Anal. 30(3), 319–336 (2011)
Charu, C., Chandan, K.: Data Clustering: Algorithms and Applications. Chapman and Hall/CRC, Boca Raton (2013)
Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, Hoboken (2012)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via EM algorithm (with discussion). J. Roy. Stat. Soc. Ser. 39, 1–38 (1977)
Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recogn. 41(1), 176–190 (2008)
Fouedjio, F.: A clustering approach for discovering intrinsic clusters in multivariate geostatistical data. In: Perner, P. (ed.) MLDM 2016. LNCS, vol. 9729, pp. 491–500. Springer, Switzerland (2016)
Fouedjio, F.: A hierarchical clustering method for multivariate geostatistical data. Spatial Statistics (2016)
Guillot, G., Kan-King-Yu, D., Michelin, J., Huet, P.: Inference of a hidden spatial tessellation from multivariate data: application to the delineation of homogeneous regions in an agricultural field. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 55(3), 407–430 (2006)
Haas, T.C.: Lognormal and moving window methods of estimating acid deposition. J. Am. Stat. Assoc. 85(412), 950–963 (1990)
Journel, A., Huijbregts, C.: Mining Geostatistics. Blackburn Press, New York (2003)
Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad and spectral. J. ACM 51(3), 497–515 (2004)
Lado, L., Hengl, T., Reuter, I.: Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148(2), 189–199 (2008)
Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Luxburg, U.V., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Stat. 36(2), 555–586 (2008)
Luxburg, U.V., Bousquet, O., Belkin, M.: Limits of spectral clustering. In: Advances in Neural Information Processing Systems, pp. 857–864 (2004)
Nascimento, M.C., Carvalho, A.C.: Spectral methods for graph clustering – a survey. Eu. J. Oper. Res. 211(2), 221–231 (2011)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856. MIT Press (2001)
Olivier, M., Webster, R.: A geostatistical basis for spatial weighting in multivariate classification. Math. Geol. 21, 15–35 (1989)
Pawitan, Y., Huang, J.: Constrained clustering of irregularly sampled spatial data. J. Stat. Comput. Simul. 73(12), 853–865 (2003)
Romary, T., Ors, F., Rivoirard, J., Deraisme, J.: Unsupervised classification of multivariate geostatistical data: two algorithms. Comput. Geosci. 85, 96–103 (2015)
Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, New York (2009)
Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970)
Wand, M., Jones, C.: Kernel Smoothing. Monographs on Statistics and Applied Probability. Chapman & Hall, Sanford (1995)
Zha, H., He, X., Ding, C., Gu, M., Simon, H.D.: Spectral relaxation for k-means clustering. In: Advances in Neural Information Processing Systems, pp. 1057–1064 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Fouedjio, F. (2016). Discovering Spatially Contiguous Clusters in Multivariate Geostatistical Data Through Spectral Clustering. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-49586-6_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49585-9
Online ISBN: 978-3-319-49586-6
eBook Packages: Computer ScienceComputer Science (R0)