Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recommendation Systems in Real Applications: Algorithm and Parallel Architecture

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10066))

  • 1651 Accesses

Abstract

Recommendation systems are popular both in business and in academia. A series of works have been reported. In this paper, we briefly introduce the background and some basic concepts of recommendation systems, especially the applications in mainstream websites, most of them built upon parallel processing systems. However, how the recommendation algorithm works in real applications? We investigate (1) the key ideas of recommendation algorithms that are being used in real applications and (2) the parallel architecture in those real recommendation systems. In addition, the performance of recommendation system for those sites are also being analyzed and compared. We also analyze their features and compare their performances. Finally, we outline the challenges and opportunities that all recommendation systems are facing. It is anticipated that the present review will deepen people’s understanding of the field and hence contribute to guide the future research of recommendation systems. Our work can help people to better understand the literature and guide the future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tech.meituan.com/mt-recommend-practice.html.

  2. 2.

    http://tech.meituan.com/meituan-search-rank.html.

  3. 3.

    https://code.facebook.com/posts/861999383875667/recommending-items-to-more-than-a-billion-people/.

  4. 4.

    http://giraph.apache.org/.

  5. 5.

    https://zh.wikipedia.org/zh-cn/Giraph.

  6. 6.

    https://en.wikipedia.org/wiki/MinHash.

  7. 7.

    https://www.netflix.com/.

  8. 8.

    http://techblog.netflix.com/2013/03/system-architectures-for.html.

  9. 9.

    http://techblog.netflix.com/2012/06/netflix-recommendations-beyond-5-stars.html.

  10. 10.

    http://recsys.acm.org/recsys14/.

  11. 11.

    http://recsys.acm.org/recsys15/.

References

  1. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  2. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW, pp. 175–186. ACM (1994)

    Google Scholar 

  3. Liu, L., Lecue, F., Mehandjiev, N.: Semantic content-based recommendation of software services using context. TWEB 7(3), 17–36 (2013)

    Article  Google Scholar 

  4. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: I-SEMANTICS, pp. 1–8. ACM (2012)

    Google Scholar 

  5. Jung, G., Mukherjee, T., Kunde, S., Kim, H., Sharma, N., Goetz, F.: Cloudadvisor: a recommendation-as-a-service platform for cloud configuration and pricing. In: SERVICES, pp. 456–463. IEEE (2013)

    Google Scholar 

  6. Carrer-Neto, W., Hernández-Alcaraz, M.L., Valencia-García, R., García-Sánchez, F.: Social knowledge-based recommender system. Application to the movies domain. Expert Syst. Appl. 39(12), 10990–11000 (2012)

    Article  Google Scholar 

  7. Park, Y., Park, S., Jung, W., Lee, S.: Reversed CF: a fast collaborative filtering algorithm using a k-nearest neighbor graph. Expert Syst. Appl. 42(8), 4022–4028 (2015)

    Article  MathSciNet  Google Scholar 

  8. Jiang, S., Qian, X., Shen, J., Fu, Y., Mei, T.: Author topic model based collaborative filtering for personalized POI recommendation. TMM 6, 907–918 (2015)

    Google Scholar 

  9. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68880-8_32

    Chapter  Google Scholar 

  10. Majid, A., Chen, L., Chen, G., Mirza, H.T., Hussain, I., Woodward, J.: A context-aware personalized travel recommendation system based on geotagged social media data mining. IJGIS 27(4), 662–684 (2013)

    Google Scholar 

  11. Jamali, M., Ester, M., Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: SIGKDD, pp. 397–406. ACM (2009)

    Google Scholar 

  12. Yin, H., Cui, B., Chen, L., Zhiting, H., Zhang, C.: Modeling location-based user rating profiles for personalized recommendation. TKDD 9(3), 19 (2015)

    Article  Google Scholar 

  13. Zhang, Y., Zhang, M., Zhang, Y., Lai, G., Liu, Y., Zhang, H., Ma, S.: Daily-aware personalized recommendation based on feature-level time series analysis. In: WWW, pp. 1373–1383. ACM (2015)

    Google Scholar 

  14. Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: WWW, pp. 1041–1042. ACM (2008)

    Google Scholar 

  15. Ben Schafer, J., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: EC 1999, pp. 158–166. ACM (1999)

    Google Scholar 

  16. Ben Schafer, J., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. In: Applications of Data Mining to Electronic Commerce, pp. 115–153. Springer (2001)

    Google Scholar 

  17. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.F.: A survey on recommendations in location-based social networks. GeoInformatica 19(3), 525–565 (2014)

    Article  Google Scholar 

  18. Jiang, W., Wang, G., Alam Bhuiyan, M., Wu, J.: Understanding graph-based trust evaluation in online social networks: methodologies and challenges. ACM Comput. Surv.49(1) (2016). Article 10

    Google Scholar 

  19. Karydi, E., Margaritis, K.G.: Parallel and distributed collaborative filtering: a survey. arXiv preprint arXiv:1409.2762 (2014)

  20. Liang, H., Hogan, J., Yue, X.: Parallel user profiling based on folksonomy for large scaled recommender systems: an implimentation of cascading MapReduce. In: ICDMW, pp. 154–161. IEEE (2010)

    Google Scholar 

  21. Christou, I.T., Amolochitis, E., Tan, Z.-H.: Amore: design and implementation of a commercial-strength parallel hybrid movie recommendation engine. Knowl. Inf. Syst. 47, 1–26 (2015)

    Article  Google Scholar 

  22. Herbert, R., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jack, K., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23, 462–466 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  24. Volinsky, C., Koren, Y., Bell, R.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)

    Google Scholar 

  25. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW, pp. 271–280. ACM (2007)

    Google Scholar 

  26. Liu, J., Dolan, P., Pedersen, E.: Personalized news recommendation based on click behavior. In: IUI, pp. 31–40. ACM (2010)

    Google Scholar 

  27. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57. ACM (1999)

    Google Scholar 

  28. Anderson, C.: The long tail: why the future of business is selling more for less, Hyperion (2006)

    Google Scholar 

  29. Hariri, N., Mobasher, B., Burke, R.: Context adaptation in interactive recommender systems. In: ACM RecSys, pp. 41–48. ACM (2014)

    Google Scholar 

  30. Jiang, W., Wu, J., Wang, G., Zheng, H.: Forming opinions via trusted friends: time-evolving rating prediction using fluid dynamics. IEEE Trans. Comput. (2015). doi:10.1109/TC.2015.2444842

    Google Scholar 

  31. Saveski, M., Mantrach, A.: Item cold-start recommendations: learning local collective embeddings. In: ACM RecSys, pp. 89–96. ACM (2014)

    Google Scholar 

  32. Sedhain, S., Sanner, S., Braziunas, D., Xie, L., Christensen, J.: Social collaborative filtering for cold-start recommendations. In: ACM RecSys, pp. 345–348. ACM (2014)

    Google Scholar 

  33. Seminario, C.E., Wilson, D.C.: Attacking item-based recommender systems with power items. In: ACM RecSys, pp. 57–64. ACM (2014)

    Google Scholar 

  34. Frey, D., Guerraoui, R., Kermarrec, A.-M., Rault, A.: Collaborative filtering under a sybil attack: analysis of a privacy threat. In: EuroSec, p. 5. ACM (2015)

    Google Scholar 

  35. Rossi, L., Magnani, M.: The ML-model for multi-layer social networks. In: ASONAM, pp. 5–12. IEEE (2011)

    Google Scholar 

  36. Jiang, W., Wu, J., Wang, G.: On selecting recommenders for trust evaluation in online social networks. ACM Trans. Internet Technol. (TOIT) 15(4) (2015). Article 14

    Google Scholar 

  37. Ji, K., Shen, H.: Addressing cold-start: scalable recommendation with tags and keywords. Knowl. Based Syst. 83, 42–50 (2015)

    Article  Google Scholar 

  38. Vargas, S., Castells, P.: Improving sales diversity by recommending users to items. In: ACM RecSys, pp. 145–152. ACM (2014)

    Google Scholar 

  39. Meng, S., Dou, W., Zhang, X., Chen, J.: Kasr: a keyword-aware service recommendation method on mapreduce for big data applications. TPDS 25(12), 3221–3231 (2014)

    Google Scholar 

  40. Wang, C., Zheng, Z., Yang, Z.: The research of recommendation system based on Hadoop cloud platform. In: ICCSE, pp. 193–196. IEEE (2014)

    Google Scholar 

  41. Vanchinathan, H.P., Nikolic, I., De Bona, F., Krause, A.: Explore-exploit in top-n recommender systems via Gaussian processes. In: ACM RecSys, pp. 225–232. ACM (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC grants 61502161, 61472451, 61272151, the Chinese Fundamental Research Funds for the Central Universities 531107040845, and the National High-tech R&D Program of China 2014AA01A302 and 2015AA-015305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Li, M., Jiang, W., Li, K. (2016). Recommendation Systems in Real Applications: Algorithm and Parallel Architecture. In: Wang, G., Ray, I., Alcaraz Calero, J., Thampi, S. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2016. Lecture Notes in Computer Science(), vol 10066. Springer, Cham. https://doi.org/10.1007/978-3-319-49148-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49148-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49147-9

  • Online ISBN: 978-3-319-49148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics