Abstract
Recommendation systems are popular both in business and in academia. A series of works have been reported. In this paper, we briefly introduce the background and some basic concepts of recommendation systems, especially the applications in mainstream websites, most of them built upon parallel processing systems. However, how the recommendation algorithm works in real applications? We investigate (1) the key ideas of recommendation algorithms that are being used in real applications and (2) the parallel architecture in those real recommendation systems. In addition, the performance of recommendation system for those sites are also being analyzed and compared. We also analyze their features and compare their performances. Finally, we outline the challenges and opportunities that all recommendation systems are facing. It is anticipated that the present review will deepen people’s understanding of the field and hence contribute to guide the future research of recommendation systems. Our work can help people to better understand the literature and guide the future directions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
References
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW, pp. 175–186. ACM (1994)
Liu, L., Lecue, F., Mehandjiev, N.: Semantic content-based recommendation of software services using context. TWEB 7(3), 17–36 (2013)
Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: I-SEMANTICS, pp. 1–8. ACM (2012)
Jung, G., Mukherjee, T., Kunde, S., Kim, H., Sharma, N., Goetz, F.: Cloudadvisor: a recommendation-as-a-service platform for cloud configuration and pricing. In: SERVICES, pp. 456–463. IEEE (2013)
Carrer-Neto, W., Hernández-Alcaraz, M.L., Valencia-García, R., García-Sánchez, F.: Social knowledge-based recommender system. Application to the movies domain. Expert Syst. Appl. 39(12), 10990–11000 (2012)
Park, Y., Park, S., Jung, W., Lee, S.: Reversed CF: a fast collaborative filtering algorithm using a k-nearest neighbor graph. Expert Syst. Appl. 42(8), 4022–4028 (2015)
Jiang, S., Qian, X., Shen, J., Fu, Y., Mei, T.: Author topic model based collaborative filtering for personalized POI recommendation. TMM 6, 907–918 (2015)
Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68880-8_32
Majid, A., Chen, L., Chen, G., Mirza, H.T., Hussain, I., Woodward, J.: A context-aware personalized travel recommendation system based on geotagged social media data mining. IJGIS 27(4), 662–684 (2013)
Jamali, M., Ester, M., Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: SIGKDD, pp. 397–406. ACM (2009)
Yin, H., Cui, B., Chen, L., Zhiting, H., Zhang, C.: Modeling location-based user rating profiles for personalized recommendation. TKDD 9(3), 19 (2015)
Zhang, Y., Zhang, M., Zhang, Y., Lai, G., Liu, Y., Zhang, H., Ma, S.: Daily-aware personalized recommendation based on feature-level time series analysis. In: WWW, pp. 1373–1383. ACM (2015)
Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: WWW, pp. 1041–1042. ACM (2008)
Ben Schafer, J., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: EC 1999, pp. 158–166. ACM (1999)
Ben Schafer, J., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. In: Applications of Data Mining to Electronic Commerce, pp. 115–153. Springer (2001)
Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.F.: A survey on recommendations in location-based social networks. GeoInformatica 19(3), 525–565 (2014)
Jiang, W., Wang, G., Alam Bhuiyan, M., Wu, J.: Understanding graph-based trust evaluation in online social networks: methodologies and challenges. ACM Comput. Surv.49(1) (2016). Article 10
Karydi, E., Margaritis, K.G.: Parallel and distributed collaborative filtering: a survey. arXiv preprint arXiv:1409.2762 (2014)
Liang, H., Hogan, J., Yue, X.: Parallel user profiling based on folksonomy for large scaled recommender systems: an implimentation of cascading MapReduce. In: ICDMW, pp. 154–161. IEEE (2010)
Christou, I.T., Amolochitis, E., Tan, Z.-H.: Amore: design and implementation of a commercial-strength parallel hybrid movie recommendation engine. Knowl. Inf. Syst. 47, 1–26 (2015)
Herbert, R., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)
Jack, K., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23, 462–466 (1952)
Volinsky, C., Koren, Y., Bell, R.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)
Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW, pp. 271–280. ACM (2007)
Liu, J., Dolan, P., Pedersen, E.: Personalized news recommendation based on click behavior. In: IUI, pp. 31–40. ACM (2010)
Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57. ACM (1999)
Anderson, C.: The long tail: why the future of business is selling more for less, Hyperion (2006)
Hariri, N., Mobasher, B., Burke, R.: Context adaptation in interactive recommender systems. In: ACM RecSys, pp. 41–48. ACM (2014)
Jiang, W., Wu, J., Wang, G., Zheng, H.: Forming opinions via trusted friends: time-evolving rating prediction using fluid dynamics. IEEE Trans. Comput. (2015). doi:10.1109/TC.2015.2444842
Saveski, M., Mantrach, A.: Item cold-start recommendations: learning local collective embeddings. In: ACM RecSys, pp. 89–96. ACM (2014)
Sedhain, S., Sanner, S., Braziunas, D., Xie, L., Christensen, J.: Social collaborative filtering for cold-start recommendations. In: ACM RecSys, pp. 345–348. ACM (2014)
Seminario, C.E., Wilson, D.C.: Attacking item-based recommender systems with power items. In: ACM RecSys, pp. 57–64. ACM (2014)
Frey, D., Guerraoui, R., Kermarrec, A.-M., Rault, A.: Collaborative filtering under a sybil attack: analysis of a privacy threat. In: EuroSec, p. 5. ACM (2015)
Rossi, L., Magnani, M.: The ML-model for multi-layer social networks. In: ASONAM, pp. 5–12. IEEE (2011)
Jiang, W., Wu, J., Wang, G.: On selecting recommenders for trust evaluation in online social networks. ACM Trans. Internet Technol. (TOIT) 15(4) (2015). Article 14
Ji, K., Shen, H.: Addressing cold-start: scalable recommendation with tags and keywords. Knowl. Based Syst. 83, 42–50 (2015)
Vargas, S., Castells, P.: Improving sales diversity by recommending users to items. In: ACM RecSys, pp. 145–152. ACM (2014)
Meng, S., Dou, W., Zhang, X., Chen, J.: Kasr: a keyword-aware service recommendation method on mapreduce for big data applications. TPDS 25(12), 3221–3231 (2014)
Wang, C., Zheng, Z., Yang, Z.: The research of recommendation system based on Hadoop cloud platform. In: ICCSE, pp. 193–196. IEEE (2014)
Vanchinathan, H.P., Nikolic, I., De Bona, F., Krause, A.: Explore-exploit in top-n recommender systems via Gaussian processes. In: ACM RecSys, pp. 225–232. ACM (2014)
Acknowledgments
This work is supported by NSFC grants 61502161, 61472451, 61272151, the Chinese Fundamental Research Funds for the Central Universities 531107040845, and the National High-tech R&D Program of China 2014AA01A302 and 2015AA-015305.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Li, M., Jiang, W., Li, K. (2016). Recommendation Systems in Real Applications: Algorithm and Parallel Architecture. In: Wang, G., Ray, I., Alcaraz Calero, J., Thampi, S. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2016. Lecture Notes in Computer Science(), vol 10066. Springer, Cham. https://doi.org/10.1007/978-3-319-49148-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-49148-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49147-9
Online ISBN: 978-3-319-49148-6
eBook Packages: Computer ScienceComputer Science (R0)