Abstract
The division property, which is a new method to find integral characteristics, was proposed at Eurocrypt 2015. Thereafter, some applications and improvements have been proposed. The bit-based division property is also one of such improvements, and the accurate integral characteristic of Simon32 is theoretically proved. In this paper, we propose the compact representation for the bit-based division property. The disadvantage of the bit-based division property is that it cannot be applied to block ciphers whose block length is over 32 because of high time and memory complexity. The compact representation partially solves this problem, and we apply this technique to 64-bit block cipher PRESENT to illustrate our method. We can accurately evaluate the propagation characteristic of the bit-based division property thanks to the compact representation. As a result, we find 9-round integral characteristics, and the characteristic is improved by two rounds than previous best characteristic. Moreover, we attack 12-round PRESENT-80 and 13-round PRESENT-128 by using this new characteristic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In [14], they proposed two variants of the bit-based division property: the conventional bit-based division property and the bit-based division property using three subsets. In this paper, we focus on the conventional bit-based division property.
- 3.
In [12], the division property was referred to as \(\mathcal{D}_{\mathbb {K}}^{n,m}\).
References
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31
Boura, C., Canteaut, A.: Another view of the division property (2016). (Accepted to CRYPTO2016). https://eprint.iacr.org/2016/554
Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76788-6_7
Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/BFb0052343
Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/3-540-60590-8_16
Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/3-540-45661-9_9
Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 227–233. Springer, Heidelberg (1994)
Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7_3
Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6_16
Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division property. IACR Cryptology ePrint Archive 2015, 459 (2015). http://eprint.iacr.org/2015/459
Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_20
Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_12
Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 64–81. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12280-9_5
Todo, Y., Morii, M.: Bit-based division property and application to Simon family. IACR Cryptology ePrint Archive 2016, 285 (2016). (Accepted to FSE2016). https://eprint.iacr.org/2016/285
Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 331–345. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02726-5_24
Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the square attack. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99. Springer, Heidelberg (2002). doi:10.1007/3-540-45661-9_7
Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71039-4_23
Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26617-6_12
Zhang, H., Wu, W., Wang, Y.: Integral attack against bit-oriented block ciphers. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 102–118. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30840-1_7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Todo, Y., Morii, M. (2016). Compact Representation for Division Property. In: Foresti, S., Persiano, G. (eds) Cryptology and Network Security. CANS 2016. Lecture Notes in Computer Science(), vol 10052. Springer, Cham. https://doi.org/10.1007/978-3-319-48965-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-48965-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48964-3
Online ISBN: 978-3-319-48965-0
eBook Packages: Computer ScienceComputer Science (R0)