Nothing Special   »   [go: up one dir, main page]

Skip to main content

Texture Description Using Dual Tree Complex Wavelet Packets

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Included in the following conference series:

  • 2332 Accesses

Abstract

In this work we extend several DWT-based wavelet and wavelet packet feature extraction methods to use the dual-tree complex wavelet transform. This way we aim at alleviating shortcomings of the different algorithms which stem from the use of the underlying DWT. We show that, while some methods benefit significantly from extending them to be based in the dual-tree complex wavelet transform domain (and also provide the best overall results), for other methods there is almost no impact of this extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform - a coherent framework for multiscale signal and image processing. IEEE Sig. Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  2. Häfner, M., Kwitt, R., Uhl, A., Gangl, A., Wrba, F., Vécsei, A.: Feature-extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images. Pattern Anal. Appl. 12(4), 407–413 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bayram, İ., Selesnick, I.W.: On the dual-tree complex wavelet packet and m-band transforms. IEEE Trans. Sig. Process. 56(6), 2298 (2008)

    Article  MathSciNet  Google Scholar 

  4. Weickert, T., Kiencke, U.: Analytic wavelet packets - combining the dual-tree approach with wavelet packets for signal analysis and filtering. IEEE Trans. Sig. Process. 57(2), 493 (2009)

    Article  MathSciNet  Google Scholar 

  5. Liedlgruber, M., Uhl, A.: Statistical and structural wavelet packet features for pit pattern classification in zoom-endoscopic colon images. In: Dondon, P., Mladenov, V., Impedovo, S., Cepisca, S. (eds.) Proceedings of the 7th WSEAS International Conference on Wavelet Analysis & Multirate Systems (WAMUS 2007), Arcachon, France, pp. 147–152, October 2007

    Google Scholar 

  6. Coifman, R.R., Wickerhauser, M.V.: Entropy based methods for best basis selection. IEEE Trans. Inf. Theor. 38(2), 719–746 (1992)

    Article  MATH  Google Scholar 

  7. Häfner, M., Liedlgruber, M., Wrba, F., Gangl, A., Vécsei, A., Uhl, A.: Pit pattern classification of zoom-endoscopic colon images using wavelet texture features. In: Sandham, W., Hamilton, D., James, C. (eds.) Proceedings of the International Conference on Advances in Medical Signal and Image Processing (MEDSIP 2006), Glasgow, Scotland, UK, pp. 1–4, July 2006

    Google Scholar 

  8. Saito, N., Coifman, R.R.: Local discriminant bases. In: SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, International Society for Optics and Photonics, pp. 2–14 (1994)

    Google Scholar 

  9. Kylberg, G.: The Kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden, September 2011

    Google Scholar 

  10. Kato, S., Fu, K.I., Sano, Y., Fujii, T., Saito, Y., Matsuda, T., Koba, I., Yoshida, S., Fujimori, T.: Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World J. Gastroenterol. 12(9), 1416–1420 (2006)

    Article  Google Scholar 

  11. Häfner, M., Liedlgruber, M., Uhl, A.: Colonic polyp classification in high- definition video using complex wavelet-packets. In: Proceedings of Bildverarbeitung für die Medizin 2015 (BVM 2015), pp. 365–370, March 2015

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) under Project No. TRP-206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Uhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Liedlgruber, M., Häfner, M., Hämmerle-Uhl, J., Uhl, A. (2016). Texture Description Using Dual Tree Complex Wavelet Packets. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics