Abstract
In this work we extend several DWT-based wavelet and wavelet packet feature extraction methods to use the dual-tree complex wavelet transform. This way we aim at alleviating shortcomings of the different algorithms which stem from the use of the underlying DWT. We show that, while some methods benefit significantly from extending them to be based in the dual-tree complex wavelet transform domain (and also provide the best overall results), for other methods there is almost no impact of this extension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform - a coherent framework for multiscale signal and image processing. IEEE Sig. Process. Mag. 22(6), 123–151 (2005)
Häfner, M., Kwitt, R., Uhl, A., Gangl, A., Wrba, F., Vécsei, A.: Feature-extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images. Pattern Anal. Appl. 12(4), 407–413 (2009)
Bayram, İ., Selesnick, I.W.: On the dual-tree complex wavelet packet and m-band transforms. IEEE Trans. Sig. Process. 56(6), 2298 (2008)
Weickert, T., Kiencke, U.: Analytic wavelet packets - combining the dual-tree approach with wavelet packets for signal analysis and filtering. IEEE Trans. Sig. Process. 57(2), 493 (2009)
Liedlgruber, M., Uhl, A.: Statistical and structural wavelet packet features for pit pattern classification in zoom-endoscopic colon images. In: Dondon, P., Mladenov, V., Impedovo, S., Cepisca, S. (eds.) Proceedings of the 7th WSEAS International Conference on Wavelet Analysis & Multirate Systems (WAMUS 2007), Arcachon, France, pp. 147–152, October 2007
Coifman, R.R., Wickerhauser, M.V.: Entropy based methods for best basis selection. IEEE Trans. Inf. Theor. 38(2), 719–746 (1992)
Häfner, M., Liedlgruber, M., Wrba, F., Gangl, A., Vécsei, A., Uhl, A.: Pit pattern classification of zoom-endoscopic colon images using wavelet texture features. In: Sandham, W., Hamilton, D., James, C. (eds.) Proceedings of the International Conference on Advances in Medical Signal and Image Processing (MEDSIP 2006), Glasgow, Scotland, UK, pp. 1–4, July 2006
Saito, N., Coifman, R.R.: Local discriminant bases. In: SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, International Society for Optics and Photonics, pp. 2–14 (1994)
Kylberg, G.: The Kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden, September 2011
Kato, S., Fu, K.I., Sano, Y., Fujii, T., Saito, Y., Matsuda, T., Koba, I., Yoshida, S., Fujimori, T.: Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World J. Gastroenterol. 12(9), 1416–1420 (2006)
Häfner, M., Liedlgruber, M., Uhl, A.: Colonic polyp classification in high- definition video using complex wavelet-packets. In: Proceedings of Bildverarbeitung für die Medizin 2015 (BVM 2015), pp. 365–370, March 2015
Acknowledgments
This work has been supported by the Austrian Science Fund (FWF) under Project No. TRP-206.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Liedlgruber, M., Häfner, M., Hämmerle-Uhl, J., Uhl, A. (2016). Texture Description Using Dual Tree Complex Wavelet Packets. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-48890-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48889-9
Online ISBN: 978-3-319-48890-5
eBook Packages: Computer ScienceComputer Science (R0)