Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dealing with the Best Attachment Problem via Heuristics

  • Conference paper
  • First Online:
Intelligent Distributed Computing X (IDC 2016)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 678))

Included in the following conference series:

Abstract

Ordering nodes by rank is a benchmark used in several contexts, from recommendation-based trust networks to e-commerce, search engines and websites ranking. In these scenarios, the node rank depends on the set of links the node establishes, hence it becomes important to choose appropriately the nodes to connect to. The problem of finding which nodes to connect to in order to achieve the best possible rank is known as the best attachment problem. Since in the general case the best attachment problem is NP-hard, in this work we propose heuristics that produce near-optimal results while being computable in polynomial time; simulations on different networks show that our proposals preserve both effectiveness and feasibility in obtaining the best rank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weng, J., Miao, C., Goh, A., Shen, Z., Gay, R.: Trust-based agent community for collaborative recommendation. In: AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, New York, NY, USA, ACM (2006) 1260–1262

    Google Scholar 

  2. Liu, X.: Towards context-aware social recommendation via trust networks. In Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G., eds.: Web Information Systems Engineering -WISE 2013. Volume 8180 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013) 121–134

    Google Scholar 

  3. Pan, B., Hembrooke, H., Joachims, T., Lorigo, L., Gay, G., Granka, L.: In google we trust: Users decisions on rank, position, and relevance. Journal of Computer-Mediated Communication 12(3) (2007) 801–823

    Google Scholar 

  4. Chauhan, V., Jaiswal, A., Khan, J.: Web page ranking using machine learning approach. In: Advanced Computing Communication Technologies (ACCT), 2015 Fifth International Conference on. (Feb 2015) 575–580

    Google Scholar 

  5. Fung, R., Lee, M.: Ec-trust (trust in electronic commerce): Exploring the antecedent factors. In: Proceedings of the 5th Americas Conference on Information Systems. (1999) 517–519

    Google Scholar 

  6. Sameerkhan, P., Shahrukh, K., Mohammad, A., Amir, A., Bali, A.: Comment based grading and rating system in e-commerce. International Journal of Engineering Research and General Science 3(1) (2015) 1319–1322

    Google Scholar 

  7. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Gain the best reputation in trust networks. In Brazier, F., Nieuwenhuis, K., Pavlin, G.,Warnier, M., Badica, C., eds.: Intelligent Distributed Computing V. Volume 382 of Studies in Computational Intelligence. Springer Berlin Heidelberg (2012) 213–218

    Google Scholar 

  8. Berkhin, P.: A survey on pagerank computing. Internet Mathematics 2 (2005) 73–120

    Google Scholar 

  9. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1998)

    Google Scholar 

  10. Olsen, M., Viglas, A., Zvedeniouk, I.: An approximation algorithm for the link building problem. CoRR abs/1204.1369 (2012)

    Google Scholar 

  11. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Users attachment in trust networks: Reputation vs. effort. Int. J. Bio-Inspired Comput. 5(4) (July 2013) 199–209

    Google Scholar 

  12. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: A heuristic to explore trust networks dynamics. In Zavoral, F., Jung, J.J., Badica, C., eds.: Intelligent Distributed Computing VII. Volume 511 of Studies in Computational Intelligence. Springer International Publishing (2014) 67–76

    Google Scholar 

  13. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: The cost of trust in the dynamics of best attachment. Computing & Informatics 34(1) (2015)

    Google Scholar 

  14. Avrachenkov, K., Litvak, N.: The effect of new links on google pagerank. Stochastic Models 22(2) (2006) 319–331

    Google Scholar 

  15. de Kerchove, C., Ninove, L., Dooren, P.V.: Maximizing pagerank via outlinks. CoRR abs/0711.2867 (2007)

    Google Scholar 

  16. Fercoq, O., Akian, M., Bouhtou, M., Gaubert, S.: Ergodic control and polyhedral approaches to pagerank optimization. IEEE Trans. Automat. Contr. 58(1) (2013) 134–148

    Google Scholar 

  17. Sydow, M.: Can one out-link change your pagerank? In Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A., eds.: AWIC. Volume 3528 of Lecture Notes in Computer Science., Springer (2005) 408–414

    Google Scholar 

  18. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Internet Technol. 5(1) (Febraury 2005) 92–128

    Google Scholar 

  19. Langville, A., Meyer, C.: Deeper inside pagerank. Internet Mathematics 1(3) (2004) 335–380

    Google Scholar 

  20. Nazin, A., Polyak, B.: Adaptive randomized algorithm for finding eigenvector of stochastic matrix with application to pagerank. In: Proceedings of the 48th IEEE Conference on Decision and Control, CDC/CCC 2009. (Dec 2009) 127–132

    Google Scholar 

  21. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74 (2002) 47

    Google Scholar 

  22. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999) 509

    Google Scholar 

  23. Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t take all: Characterizing the competition for links on the web. Proceedings of the National Academy of Sciences 99(8) (2002) 5207–5211

    Google Scholar 

  24. Batagelj, V., Mrvar, A.: Pajek - program for large network analysis. (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malgeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G. (2017). Dealing with the Best Attachment Problem via Heuristics. In: Badica, C., et al. Intelligent Distributed Computing X. IDC 2016. Studies in Computational Intelligence, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-319-48829-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48829-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48828-8

  • Online ISBN: 978-3-319-48829-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics