Nothing Special   »   [go: up one dir, main page]

Skip to main content

Plant Recommender System Based on Multi-label Classification

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 (AISI 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 533))

  • 2618 Accesses

Abstract

In this paper, a plant recommender system using 2D digital images of leaves is proposed. This system made use of feature fusion technique and the multi-label classification method. Feature fusion technique is used to combine the color, shape, and texture features. Invariant moments, color moments, and Scale Invariant Feature Transform (SIFT) are used to extract the shape, color, and texture features, respectively. The multi-label classification method is capable of classifying samples in more than one class. In multi-label classification method, the nearest neighbor classifier with different metrics is used to match the unknown image with the training images and assigns five different class labels (i.e. recommendations) for each unknown image. The proposed approach was tested using Flavia dataset which consists of 1907 colored images of leaves. The experimental results proved that the accuracy of feature fusion method was much better than all other single features. Moreover, the experiments demonstrated their robustness to provide reliable recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaber, T., Tharwat, A., Snasel, V., Hassanien, A.E.: Plant identification: Two dimensional-based vs. one dimensional-based feature extraction methods. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds.) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. AISC, vol. 368, pp. 375–385. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19719-7_33

    Google Scholar 

  2. Caglayan, A., Guclu, O., Can, A.B.: A plant recognition approach using shape and color features in leaf images. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 161–170. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Priya, C.A., Balasaravanan, T., Thanamani, A.S.: An efficient leaf recognition algorithm for plant classification using support vector machine. In: International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), pp. 428–432. IEEE (2012)

    Google Scholar 

  4. Tharwat, A., Gaber, T., Awad, Y.M., Dey, N., Hassanien, A.E.: Plants identification using feature fusion technique and bagging classifier. In: Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. AISC, vol. 407, pp. 461–471. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26690-9_41

    Chapter  Google Scholar 

  5. Carrillo, D., López, V.F., Moreno, M.N.: Multi-label classification for recommender systems. In: Pérez, J.B., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems, pp. 181–188. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  7. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. In: Kohavi, R., Provost, F. (eds.) Applications of Data Mining to Electronic Commerce, pp. 115–153. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  9. Elfattah, M.A., ELsoud, M.A.A., Hassanien, A.E., Kim, T.: Automated classification of galaxies using invariant moments. In: Kim, T., Lee, Y., Fang, W. (eds.) FGIT 2012. LNCS, vol. 7709, pp. 103–111. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Tharwat, A., Gaber, T., Hassanien, A.E., Shahin, M.K., Refaat, B.: SIFT-based arabic sign language recognition system. In: Abraham, A., Krömer, P., Snasel, V. (eds.) Afro-European Conf. for Ind. Advancement. AISC, vol. 334, pp. 359–370. Springer, Heidelberg (2015)

    Google Scholar 

  11. Ahmed, S., Gaber, T., Tharwat, A., Hassanien, A.E., Snáel, V.: Muzzle-based cattle identification using speed up robust feature approach. In: 2015 Proceedings of the International Conference on Intelligent Networking and Collaborative Systems (INCOS), pp. 99–104. IEEE (2015)

    Google Scholar 

  12. Tharwat, A., Gaber, T., Hassanien, A.E.: Two biometric approaches for cattle identification based on features and classifiers fusion. Int. J. Image Min. 1(4), 342–365 (2015)

    Article  Google Scholar 

  13. Gaber, T., Tharwat, A., Hassanien, A.E., Snasel, V.: Biometric cattle identification approach based on weber’s local descriptor and adaboost classifier. Comput. Electron. Agric. 122, 55–66 (2016)

    Article  Google Scholar 

  14. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)

    Article  Google Scholar 

  15. Tharwat, A., Mahdi, H., Hennawy, A., Hassanien, A.E.: Face sketch recognition using local invariant features. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 117–122. IEEE (2015)

    Google Scholar 

  16. Tharwat, A., Mahdi, H., Hennawy, A.E., Hassanien, A.E.: Face sketch synthesis and recognition based on linear regression transformation and multi-classifier technique. In: Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. AISC, vol. 407, pp. 183–193. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26690-9_17

    Chapter  Google Scholar 

  17. Ibrahim, A., Tharwat, A.: Biometric authenticationmethods based on ear and finger knuckle images. Int. J. Comput. Sci. Issues (IJCSI) 11(3), 134–138 (2014)

    Google Scholar 

  18. Semary, N.A., Tharwat, A., Elhariri, E., Hassanien, A.E.: Fruit-based tomato grading system using features fusion and support vector machine. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 401–410. Springer, Heidelberg (2015). doi:10.1007/978-3-319-11310-4_35

    Google Scholar 

  19. Tharwat, A., Ibrahim, A., Hassanien, A.E., Schaefer, G.: Ear recognition using block-based principal component analysis and decision fusion. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 246–254. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19941-2_24

    Chapter  Google Scholar 

  20. Sharif, M.M., Tharwat, A., Hassanien, A.E., Hefny, H.A., Schaefer, G.: Enzyme function classification based on borda count ranking aggregation method. In: Ryżko, D., Gawrysiak, P., Kryszkiewicz, M., Rybiński, H. (eds.) Machine Intelligence and Big Data in Industry. SBD, vol. 19, pp. 75–85. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30315-4_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Tharwat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tharwat, A., Mahdi, H., Hassanien, A.E. (2017). Plant Recommender System Based on Multi-label Classification. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48308-5_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48307-8

  • Online ISBN: 978-3-319-48308-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics