Abstract
In this paper, a plant recommender system using 2D digital images of leaves is proposed. This system made use of feature fusion technique and the multi-label classification method. Feature fusion technique is used to combine the color, shape, and texture features. Invariant moments, color moments, and Scale Invariant Feature Transform (SIFT) are used to extract the shape, color, and texture features, respectively. The multi-label classification method is capable of classifying samples in more than one class. In multi-label classification method, the nearest neighbor classifier with different metrics is used to match the unknown image with the training images and assigns five different class labels (i.e. recommendations) for each unknown image. The proposed approach was tested using Flavia dataset which consists of 1907 colored images of leaves. The experimental results proved that the accuracy of feature fusion method was much better than all other single features. Moreover, the experiments demonstrated their robustness to provide reliable recommendations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gaber, T., Tharwat, A., Snasel, V., Hassanien, A.E.: Plant identification: Two dimensional-based vs. one dimensional-based feature extraction methods. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds.) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. AISC, vol. 368, pp. 375–385. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19719-7_33
Caglayan, A., Guclu, O., Can, A.B.: A plant recognition approach using shape and color features in leaf images. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 161–170. Springer, Heidelberg (2013)
Priya, C.A., Balasaravanan, T., Thanamani, A.S.: An efficient leaf recognition algorithm for plant classification using support vector machine. In: International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), pp. 428–432. IEEE (2012)
Tharwat, A., Gaber, T., Awad, Y.M., Dey, N., Hassanien, A.E.: Plants identification using feature fusion technique and bagging classifier. In: Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. AISC, vol. 407, pp. 461–471. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26690-9_41
Carrillo, D., López, V.F., Moreno, M.N.: Multi-label classification for recommender systems. In: Pérez, J.B., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems, pp. 181–188. Springer, Heidelberg (2013)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. In: Kohavi, R., Provost, F. (eds.) Applications of Data Mining to Electronic Commerce, pp. 115–153. Springer, Heidelberg (2001)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)
Elfattah, M.A., ELsoud, M.A.A., Hassanien, A.E., Kim, T.: Automated classification of galaxies using invariant moments. In: Kim, T., Lee, Y., Fang, W. (eds.) FGIT 2012. LNCS, vol. 7709, pp. 103–111. Springer, Heidelberg (2012)
Tharwat, A., Gaber, T., Hassanien, A.E., Shahin, M.K., Refaat, B.: SIFT-based arabic sign language recognition system. In: Abraham, A., Krömer, P., Snasel, V. (eds.) Afro-European Conf. for Ind. Advancement. AISC, vol. 334, pp. 359–370. Springer, Heidelberg (2015)
Ahmed, S., Gaber, T., Tharwat, A., Hassanien, A.E., Snáel, V.: Muzzle-based cattle identification using speed up robust feature approach. In: 2015 Proceedings of the International Conference on Intelligent Networking and Collaborative Systems (INCOS), pp. 99–104. IEEE (2015)
Tharwat, A., Gaber, T., Hassanien, A.E.: Two biometric approaches for cattle identification based on features and classifiers fusion. Int. J. Image Min. 1(4), 342–365 (2015)
Gaber, T., Tharwat, A., Hassanien, A.E., Snasel, V.: Biometric cattle identification approach based on weber’s local descriptor and adaboost classifier. Comput. Electron. Agric. 122, 55–66 (2016)
Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)
Tharwat, A., Mahdi, H., Hennawy, A., Hassanien, A.E.: Face sketch recognition using local invariant features. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 117–122. IEEE (2015)
Tharwat, A., Mahdi, H., Hennawy, A.E., Hassanien, A.E.: Face sketch synthesis and recognition based on linear regression transformation and multi-classifier technique. In: Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. AISC, vol. 407, pp. 183–193. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26690-9_17
Ibrahim, A., Tharwat, A.: Biometric authenticationmethods based on ear and finger knuckle images. Int. J. Comput. Sci. Issues (IJCSI) 11(3), 134–138 (2014)
Semary, N.A., Tharwat, A., Elhariri, E., Hassanien, A.E.: Fruit-based tomato grading system using features fusion and support vector machine. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 401–410. Springer, Heidelberg (2015). doi:10.1007/978-3-319-11310-4_35
Tharwat, A., Ibrahim, A., Hassanien, A.E., Schaefer, G.: Ear recognition using block-based principal component analysis and decision fusion. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 246–254. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19941-2_24
Sharif, M.M., Tharwat, A., Hassanien, A.E., Hefny, H.A., Schaefer, G.: Enzyme function classification based on borda count ranking aggregation method. In: Ryżko, D., Gawrysiak, P., Kryszkiewicz, M., Rybiński, H. (eds.) Machine Intelligence and Big Data in Industry. SBD, vol. 19, pp. 75–85. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30315-4_7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Tharwat, A., Mahdi, H., Hassanien, A.E. (2017). Plant Recommender System Based on Multi-label Classification. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_79
Download citation
DOI: https://doi.org/10.1007/978-3-319-48308-5_79
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48307-8
Online ISBN: 978-3-319-48308-5
eBook Packages: EngineeringEngineering (R0)