Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Integrated Smoothing Method for Fingerprint Recognition Enhancement

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 (AISI 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 533))

Abstract

Fingerprint identification systems are one of the most well-known and publicized biometrics because of the inherent ease in acquisition, the numerous sources (ten fingers) available for collection, and their established use by law enforcement and immigration. These systems rely on the unique biological characteristics of individuals to accurately verify their identities. To get reliable and accurate verification results, these systems need high quality images. The quality of the fingerprint image is obtained by using noise-free images during the pre-processing and filtering stages. In this paper, we proposed an integrated smoothing method (ISM) for fingerprint image recognition enhancement based on a linear combination of three different filtering techniques named median filter (MF), Wiener filter (WF) and anisotropic diffusion filter (ADF). This combination is made by using two coefficient parameters (\(\alpha , \beta \)) with different values to enhance the quality of images and remove the unwanted distortion or noise that affect a fingerprint recognition system. The ISM is applied in the pre-processing stage to get a noise-free fingerprint image with high accuracy factor. We used the benchmarking FVC2004 and FVC2006 databases to test our method and the Wilcoxon signed-rank test (W) and the peak signal-to-noise ratio (PSNR) for results evaluation. The experimental results indicate that the proposed ISM improves the performance of the fingerprint identification significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clancy, T.C., Kiyavash, N., Lin, D.G.: Secure smart card based fingerprint authentication. In: Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Application, pp. 45–52, New York (2003)

    Google Scholar 

  2. Ratha, N.K., Karu, K., Chen, S., Jain, A.K.: A real-time matching system for large fingerprint databases. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 799–813 (1996)

    Article  Google Scholar 

  3. Zhao, Q., Zhang, D., Zhang, L., Luo, N.: Adaptive fingerprint pore modeling and extraction. Pattern Recogn. 43, 2833–2844 (2010)

    Article  MATH  Google Scholar 

  4. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  5. Reyad, O., Kotulski, Z.: Image encryption using koblitz’s encoding and new mapping method based on elliptic curve random number generator. In: Dziech, A., Leszczuk, M., Baran, R. (eds.) MCSS 2015. CCIS, vol. 566, pp. 34–45. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26404-2_3

    Chapter  Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2006)

    Google Scholar 

  7. Kumar, B.A., Joshi, B.K.: A review paper: noise models in digital image processing. Signal Image Process. Inter. J. (SIPIJ) 6(2), 63–75 (2015)

    Article  Google Scholar 

  8. Jain, A.K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system using fingerprints. Proc. IEEE 85(9), 1365–1388 (1997)

    Article  Google Scholar 

  9. Hong, L., Wan, Y., Jain, A.K.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)

    Article  Google Scholar 

  10. Yun, E.K., Cho, S.B.: Adaptive fingerprint image enhancement with fingerprint image quality analysis. Image Vis. Comput. 24, 101–110 (2006)

    Article  Google Scholar 

  11. Gnanasivam, P., Muttan, S.: An efficient algorithm for fingerprint preprocessing and feature extraction. Procedia Comput. Sci. 2, 133–142 (2010)

    Article  Google Scholar 

  12. Hassanien, A.E.: Hiding iris data for authentication of digital images using wavelet theory. Pattern Recogn. Image Anal. 16(4), 637–643 (2006)

    Article  Google Scholar 

  13. Bouaziz, A., Draa, A., Chikhi, S.: Bat algorithm for fingerprint image enhancement. In: 12th International Symposium on Programming and Systems (ISPS), pp. 1–8. IEEE (2015)

    Google Scholar 

  14. Neeti, K., Khicha, A.: Image enhancement based on log-gabor filter for noisy fingerprint image. In: Satapathy, S.C., et al. (eds.) ICT4SD 2015 Volume 1. AISC, vol. 408, pp. 553–559. Springer, Singapore (2016)

    Chapter  Google Scholar 

  15. Wu, C., Shi, Z., Govindaraju, V.: Fingerprint image enhancement method using directional median filter. In: Biometric Technology for Human Identification, SPIE 5404, pp. 66–75 (2004)

    Google Scholar 

  16. Jin, F., Fieguth, P., Winger, L., Jernigan, E.: Adaptive wiener filtering of noisy images and image sequences. In: Proceedings of IEEE International Conference on Image Process, vol. 3, pp. 349–352 (2003)

    Google Scholar 

  17. Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recogn. 46(5), 1369–1381 (2013)

    Article  Google Scholar 

  18. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: third fingerprint verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25948-0_1

    Chapter  Google Scholar 

  19. Cappelli, R., Ferrara, M., Franco, A., Maltoni, D.: Fingerprint verification competition 2006. Biom. Technol. Today 15, 7–9 (2007)

    Article  Google Scholar 

  20. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khfagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khfagy, M., AbdelSatar, Y., Reyad, O., Omran, N. (2017). An Integrated Smoothing Method for Fingerprint Recognition Enhancement. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48308-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48307-8

  • Online ISBN: 978-3-319-48308-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics