Abstract
This study presents a compilation of techniques for Knowledge Representation (KR) in Intelligent Tutoring System (ITS). Shows pros and cons of each approach in order to use the proper technique according to the needs. Analyses literature related to ITS and KR to find the approaches. Highlights: Fuzzy Cognitive Maps, Bayesian Network, Semantic Networks, Graphs, among other methods. Each approach contributes with elements to model knowledge. We made a comparison of each model with determined factors. Each technique of KR provides his own vision of how the world should look. Besides, it shows what information is necessary to represent and what is important to ignore. Different approaches to intelligent reasoning lead to different goals and definitions of success.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badaracco, M., Martínez, L.: A fuzzy linguistic algorithm for adaptive test in intelligent tutoring system based on competences. Expert Syst. Appl. 40(8), 3073–3086 (2013)
Campos, I.S., Mata, A.C.U.: Analysis of the debate on the impact of technological media in learning processes. Actualidades Investigativas en Educación 11(1), 1–22 (2011)
Carbonell, J.R.: AI in CAI: an artificial intelligence approach to computer assisted instruction. IEEE Trans. Man Mach. Syst. 11, 190–202 (1970)
Cataldi, Z., Lage, F.J.: Modelado del Estudiante en Sistemas Tutores Inteligentes. Revista Iberoamericana de Tecnologia en Educación y Educación enTecnología 5, 29–38 (2010)
Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14(1), 17–33 (1993)
de Kereki, F., Guerrero, I.: Modelo para la Creación de Entornos de Aprendizaje basados en técnicas de Gestión del Conocimiento. Ph.D. thesis, Universidad Politecnica de Madrid (2003)
Hossein, M., Zarandi, F., Khademian, M., Minaei-bidgoli, B.: A fuzzy expert system architecture for intelligent tutoring systems: a cognitive mapping approach. J. Intell. Learn. Syst. Appl. 4, 29–40 (2012)
Huertas, C., Juárez-Ramírez, R.: Developing an intelligent tutoring system for vehicle dynamics. Procedia - Soc. Behav. Sci. 106, 838–847 (2013)
Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Longman Publishing Co. Inc., Boston (1997)
Krudysz, G.A., Sam Li, J., McClellan, J.H.: Web-based bayesian tutoring system. In: 12th Digital Signal Processing Workshop—4th Signal Processing Education Workshop, pp. 129–134 (2006)
Larrañaga, P., Moral, S.: Probabilistic graphical models in artificial intelligence. Appl. Soft Comput. 11(2), 1511–1528 (2011)
Liu, Z., Wang, H.: A modeling method based on bayesian networks in intelligent tutoring system. Structure, 967–972 (2007)
Millán, E., Pérez-De-La-Cruz, J.L.: A Bayesian diagnostic algorithm for student modeling and its evaluation. User Model. User-Adapt. Interact. 12, 281–330 (2002)
Millán, E., Descalço, L., Castillo, G., Oliveira, P., Diogo, S.: Using Bayesian networks to improve knowledge assessment. Comput. Edu. 60(1), 436–447 (2013)
Mishra, M., Mishra, V.K., Sharma, H.R.: Intellectual ability planning for intelligent tutoring system in computer science engineering education abstract. In: Proceedings - 2012 3rd National Conference on Emerging Trends and Applications in Computer Science, NCETACS-2012, pp. 26–30 (2012)
Nguyen, T.A., Raspitzu, A., Aiello, M.: Ontology-based office activity recognition with applications for energy savings. J. Ambient Intell. Humanized Comput. 4(5), 1–15 (2013)
Ramirez, C., Valdes, B.: A general knowledge representation model for the acquisition of skills and concepts. In: 2009 8th IEEE International Conference on Cognitive Informatics, pp. 412–417 (2009)
Ramirez, C., Valdes, B.: A general knowledge representation model of concepts (2012)
Ramírez-Noriega, A., Juárez-Ramírez, R., Huertas, C., Martínez-Ramírez, Y.: A methodology for building bayesian networks for knowledge representation in intelligent tutoring systems. In: Congreso Internacional de Investigación e Innovación en Ingeniería de Software 2015, San Luís Potosí, pp. 124–133 (2015)
Rivas Navarro, M.: Procesos cognitivos y aprendizaje significativo. BOCM, Madrid (2008)
Rodrigues, F.H., Bez, M.R., Flores, C.D.: Generating bayesian networks from medical ontologies. In: 2013 8th Computing Colombian Conference, 8CCC 2013 (2013)
Rodríguez, R.J.: Herramientas informáticas para la representación del conocimiento Software. Subjetividad y pocesos cognitivos 14(1712), 217–232 (2010)
Santhi, R., Priya, B., Nandhini, J.: Review of intelligent tutoring systems using bayesian approach (2013). arXiv preprint arXiv:1302.7081
Satar, A.: Using of intelligence tutoring systems for knowledge representation in learning and teaching process. Kufa Math. Comput. 1(5), 1–13 (2012)
Sedki, K., Beaufort, L.B.D.: Cognitive maps and bayesian networks for knowledge representation and reasoning. In: 24th International Conference on Tools with Artificial Intelligence, pp. 1035–1040 (2012)
Sharma, T., Kelkar, D.: A tour towards knowledge representation techniques. Int. J. Comput. Technol. Electr. Eng. (IJCTEE) 2(2), 131–135 (2012)
Socorro, R., Simón, A., Valdés, R., Fernández, F.O., Rosete, A., Moreno, M., Leyva, E., Pina, J.: Las ontologías en la representación del conocimiento (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ramírez-Noriega, A., Juárez-Ramírez, R., Jiménez, S., Martínez-Ramírez, Y. (2017). Knowledge Representation in Intelligent Tutoring System. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-48308-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48307-8
Online ISBN: 978-3-319-48308-5
eBook Packages: EngineeringEngineering (R0)