Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

This study presents a compilation of techniques for Knowledge Representation (KR) in Intelligent Tutoring System (ITS). Shows pros and cons of each approach in order to use the proper technique according to the needs. Analyses literature related to ITS and KR to find the approaches. Highlights: Fuzzy Cognitive Maps, Bayesian Network, Semantic Networks, Graphs, among other methods. Each approach contributes with elements to model knowledge. We made a comparison of each model with determined factors. Each technique of KR provides his own vision of how the world should look. Besides, it shows what information is necessary to represent and what is important to ignore. Different approaches to intelligent reasoning lead to different goals and definitions of success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badaracco, M., Martínez, L.: A fuzzy linguistic algorithm for adaptive test in intelligent tutoring system based on competences. Expert Syst. Appl. 40(8), 3073–3086 (2013)

    Article  Google Scholar 

  2. Campos, I.S., Mata, A.C.U.: Analysis of the debate on the impact of technological media in learning processes. Actualidades Investigativas en Educación 11(1), 1–22 (2011)

    Google Scholar 

  3. Carbonell, J.R.: AI in CAI: an artificial intelligence approach to computer assisted instruction. IEEE Trans. Man Mach. Syst. 11, 190–202 (1970)

    Article  Google Scholar 

  4. Cataldi, Z., Lage, F.J.: Modelado del Estudiante en Sistemas Tutores Inteligentes. Revista Iberoamericana de Tecnologia en Educación y Educación enTecnología 5, 29–38 (2010)

    Google Scholar 

  5. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14(1), 17–33 (1993)

    Google Scholar 

  6. de Kereki, F., Guerrero, I.: Modelo para la Creación de Entornos de Aprendizaje basados en técnicas de Gestión del Conocimiento. Ph.D. thesis, Universidad Politecnica de Madrid (2003)

    Google Scholar 

  7. Hossein, M., Zarandi, F., Khademian, M., Minaei-bidgoli, B.: A fuzzy expert system architecture for intelligent tutoring systems: a cognitive mapping approach. J. Intell. Learn. Syst. Appl. 4, 29–40 (2012)

    Google Scholar 

  8. Huertas, C., Juárez-Ramírez, R.: Developing an intelligent tutoring system for vehicle dynamics. Procedia - Soc. Behav. Sci. 106, 838–847 (2013)

    Article  Google Scholar 

  9. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Longman Publishing Co. Inc., Boston (1997)

    Google Scholar 

  10. Krudysz, G.A., Sam Li, J., McClellan, J.H.: Web-based bayesian tutoring system. In: 12th Digital Signal Processing Workshop—4th Signal Processing Education Workshop, pp. 129–134 (2006)

    Google Scholar 

  11. Larrañaga, P., Moral, S.: Probabilistic graphical models in artificial intelligence. Appl. Soft Comput. 11(2), 1511–1528 (2011)

    Article  Google Scholar 

  12. Liu, Z., Wang, H.: A modeling method based on bayesian networks in intelligent tutoring system. Structure, 967–972 (2007)

    Google Scholar 

  13. Millán, E., Pérez-De-La-Cruz, J.L.: A Bayesian diagnostic algorithm for student modeling and its evaluation. User Model. User-Adapt. Interact. 12, 281–330 (2002)

    Article  MATH  Google Scholar 

  14. Millán, E., Descalço, L., Castillo, G., Oliveira, P., Diogo, S.: Using Bayesian networks to improve knowledge assessment. Comput. Edu. 60(1), 436–447 (2013)

    Article  Google Scholar 

  15. Mishra, M., Mishra, V.K., Sharma, H.R.: Intellectual ability planning for intelligent tutoring system in computer science engineering education abstract. In: Proceedings - 2012 3rd National Conference on Emerging Trends and Applications in Computer Science, NCETACS-2012, pp. 26–30 (2012)

    Google Scholar 

  16. Nguyen, T.A., Raspitzu, A., Aiello, M.: Ontology-based office activity recognition with applications for energy savings. J. Ambient Intell. Humanized Comput. 4(5), 1–15 (2013)

    Google Scholar 

  17. Ramirez, C., Valdes, B.: A general knowledge representation model for the acquisition of skills and concepts. In: 2009 8th IEEE International Conference on Cognitive Informatics, pp. 412–417 (2009)

    Google Scholar 

  18. Ramirez, C., Valdes, B.: A general knowledge representation model of concepts (2012)

    Google Scholar 

  19. Ramírez-Noriega, A., Juárez-Ramírez, R., Huertas, C., Martínez-Ramírez, Y.: A methodology for building bayesian networks for knowledge representation in intelligent tutoring systems. In: Congreso Internacional de Investigación e Innovación en Ingeniería de Software 2015, San Luís Potosí, pp. 124–133 (2015)

    Google Scholar 

  20. Rivas Navarro, M.: Procesos cognitivos y aprendizaje significativo. BOCM, Madrid (2008)

    Google Scholar 

  21. Rodrigues, F.H., Bez, M.R., Flores, C.D.: Generating bayesian networks from medical ontologies. In: 2013 8th Computing Colombian Conference, 8CCC 2013 (2013)

    Google Scholar 

  22. Rodríguez, R.J.: Herramientas informáticas para la representación del conocimiento Software. Subjetividad y pocesos cognitivos 14(1712), 217–232 (2010)

    Google Scholar 

  23. Santhi, R., Priya, B., Nandhini, J.: Review of intelligent tutoring systems using bayesian approach (2013). arXiv preprint arXiv:1302.7081

  24. Satar, A.: Using of intelligence tutoring systems for knowledge representation in learning and teaching process. Kufa Math. Comput. 1(5), 1–13 (2012)

    Google Scholar 

  25. Sedki, K., Beaufort, L.B.D.: Cognitive maps and bayesian networks for knowledge representation and reasoning. In: 24th International Conference on Tools with Artificial Intelligence, pp. 1035–1040 (2012)

    Google Scholar 

  26. Sharma, T., Kelkar, D.: A tour towards knowledge representation techniques. Int. J. Comput. Technol. Electr. Eng. (IJCTEE) 2(2), 131–135 (2012)

    Google Scholar 

  27. Socorro, R., Simón, A., Valdés, R., Fernández, F.O., Rosete, A., Moreno, M., Leyva, E., Pina, J.: Las ontologías en la representación del conocimiento (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Ramírez-Noriega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ramírez-Noriega, A., Juárez-Ramírez, R., Jiménez, S., Martínez-Ramírez, Y. (2017). Knowledge Representation in Intelligent Tutoring System. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48308-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48307-8

  • Online ISBN: 978-3-319-48308-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics