Abstract
Hill climbing and simulated annealing are two fundamental search techniques integrating most artificial intelligence and machine learning courses curricula. These techniques serve as introduction to stochastic and probabilistic based metaheuristics. Simulated annealing can be considered a hill-climbing variant with a probabilistic decision. While simulated annealing is conceptually a simple algorithm, in practice it can be difficult to parameterize. In order to promote a good simulated annealing algorithm perception by students, a simulation experiment is reported here. Key implementation issues are addressed, both for minimization and maximization problems. Simulation results are presented.
Similar content being viewed by others
References
Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Education, Upper Saddle River (2014)
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Nandhini, M., Kanmani, S.: A survey of simulated annealing methodology for university course timetabling. Int. J. Recent Trends Eng. 1(2), 177–178 (2009)
Wang, C., Mua, D., Zhao, F., Sutherland, J.W.: A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup–delivery and time windows. Comput. Ind. Eng. 83, 111–122 (2015)
Wang, S., Zuo, X., Liu, X., Zhao, X., Li, J.: Solving dynamic double row layout problem via combining simulated annealing and mathematical programming. Appl. Soft Comput. 37, 303–310 (2015)
Behnck, L.P., Doering, D., Pereira, C.P., Rettberg, A.: A modified simulated annealing algorithm for SUAVs path planning. IFAC-PapersOnLine 48(10), 63–68 (2015)
Ingber, L.: Very fast simulated re-annealing. Mathl. Comput. Model. 2(8), 967–973 (1989)
Ingber, L.: Practice versus theory. Mathl. Comput. Model. 18(11), 29–57 (1993)
Mirhosseini, S.H., Yarmohamadi, H., Kabudian, J.: MiGSA: a new simulated annealing algorithm with mixture distribution as generating function. In: 4th International Conference on Computer and Knowledge Engineering, pp. 455–461. IEEE (2014)
Debudaj-Grabysz, A., Czech, Z.J.: Theoretical and practical issues of parallel simulated annealing. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 189–198. Springer, Heidelberg (2008)
Misevičius, A.: A modified simulated annealing algorithm for the quadratic assignment problem. Informatica 14(4), 497–514 (2003)
Ali, M.M., Törn, A., Viitanen, S.: A direct search variant of the simulated annealing algorithm for optimization involving continuous variables. Comput. Oper. Res. 29, 87–102 (2002)
Park, M.-W., Kim, Y.-D.: A systematic procedure for setting parameter in simulated annealing algorithms. Comput. Ops. Res. 25(3), 207–217 (1998). Elsevier
Ameur, W.B.: Computing the initial temperature of simulated annealing. Comput. Optim. Appl. 29, 369–385 (2004). Kluwer Academic Publishers
Shakouri, H.G., Shojaee, K., Behnam, M.T.: Investigation on the choice of the initial temperature in the simulated annealing: a Mushy State SA for TSP. In: 17th IEEE Mediterranean Conference on Control & Automation, Thessaloniki, Greece, pp. 1050–1055, 24–26 June 2009
Nourani, Y., Andresen, B.: A comparison of simulated annealing cooling strategies. J. Phys. A: Math. Gen. 31, 8373–8385 (1998)
Lee, C.-Y., Lee, D.: Determination of initial temperature in fast simulate annealing. Comput. Optim. Appl 58, 503–522 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
de Moura Oliveira, P.B., Pires, E.J.S., Novais, P. (2017). Revisiting the Simulated Annealing Algorithm from a Teaching Perspective. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_70
Download citation
DOI: https://doi.org/10.1007/978-3-319-47364-2_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47363-5
Online ISBN: 978-3-319-47364-2
eBook Packages: EngineeringEngineering (R0)