Nothing Special   »   [go: up one dir, main page]

Skip to main content

ANN-Based Hybrid Algorithm Supporting Composition Control of Casting Slip in Manufacture of Ceramic Insulators

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

Published research on manufacturing processes of ceramic insulators concerns mostly material examinations. Little has been done in the field of assuring proper quality of insulators based on analysis of production data. This is why the paper discusses a new approach to supporting quality control in manufacture of ceramic insulators, based on regression analysis and ANN modeling. The proposed algorithm enables the user to control addition of raw aluminum oxide (and its graining) in order to obtain its desired grain-size composition in the mass and thus to reduce the number of defects to acceptable levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Burduk, A.: The role of artificial neural network models in ensuring the stability of systems. In.: 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol. 368, pp. 427–437. Springer (2015)

    Google Scholar 

  2. Carbajal, L., Rubio-Marcos, A., Bengochea, M.A., Fernandez, J.F.: Properties related phase evolution in porcelain ceramics. J. Eur. Ceram. Soc. 27(13–15), 4065–4069 (2007). Elsevier

    Article  Google Scholar 

  3. Carbajal, L., Rubio-Marcos, F., Bengochea, M., Fernandez, J.: Properties related phase evolution in porcelain ceramics. J. Eur. Ceram. Soc. 27, 4065–4069 (2007). Elsevier

    Article  Google Scholar 

  4. Carty, W., Senapati, U.: Porcelain—raw materials, processing, phase evolution, and mechanical behavior. J. Am. Ceram. Soc. 81(1), 3–20 (1998). Wiley

    Article  Google Scholar 

  5. Cavalcante, T., Dondi, P.M., Ercolani, M., Guarini, G., Melandri, G., Raimondo, M.: The infuence of microstructure on the performance of white porcelain stoneware. Ceram. Int. 30(6), 953–963 (2004). Elsevier

    Article  Google Scholar 

  6. Fukushima, M., Yoshizawa, Y.: Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. J. Eur. Ceram. Soc. 36(12), 2947–2953 (2015). Elsevier

    Article  Google Scholar 

  7. Grabowik, C., Krenczyk, D., Kalinowski, K.: The hybrid method of knowledge representation in a CAPP knowledge based system. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 284–295. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Islam, R., Chan, Y., Islam, F.: Structure–property relationship in high-tension ceramic insulator fired at high temperature. Mater. Sci. Eng., B 106, 132–140 (2004). Elsevier

    Article  Google Scholar 

  9. Kahraman, C., Yanik, S.: Intelligent Decision Making in Quality Management. Theory and Applications. Springer, Switzerland (2015)

    Google Scholar 

  10. Menéndez, F., Gómez, A., Voces, F., García, V.: Porcelain insulators in electrostatic precipitator. J. Electrostat. 76, 188–193 (2015). Elsevier

    Article  Google Scholar 

  11. Partyka, J., Gajek, M., Gasek, K., Lis, J.: Effect of alumina grain size distribution on mechanical properties and microstructure of the alumina porcelain type 130. Ceram. Mater. 65(3), 283–289 (2013). Poland

    Google Scholar 

  12. Reddy, S., Verma, R.: Novel technique for electric stress reduction across ceramic disc insulators used in UHV AC and DC transmission systems. Appl. Energy. Elsevier (2016)

    Google Scholar 

  13. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Segall, R.: Some mathematical and computer modelling of neural networks. Appl. Math. Model. 19(7), 386–399 (1995)

    Article  MATH  Google Scholar 

  15. Tao, L., Baoshan, Z.: Technical and economical comparisons between different kinds of materials and different geometries for electrostatic precipitator insulators. In.: International Society for Electrostatic Precipitation ICESP, Australia (2006)

    Google Scholar 

  16. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt. Ltd., India (2004). p. 280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Kowalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kowalski, A., Rosienkiewicz, M. (2017). ANN-Based Hybrid Algorithm Supporting Composition Control of Casting Slip in Manufacture of Ceramic Insulators. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics