Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Candlesticks Forecasting Using Pattern Recognition for Stock Markets

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

This paper presents a prediction system based on fuzzy modeling of Japanese candlesticks. The prediction is performed using the pattern recognition methodology and applying a lazy and nonparametric classification technique, k-Nearest Neighbours (k-NN). The Japanese candlestick chart summarizes the trading period of a commodity with only 4 parameters (open, high, low and close). The main idea of the decision system implemented in this article is to predict with accuracy, based on this vague information from previous sessions, the performance of future sessions. Therefore, investors could have valuable information about the next session and set their investment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, C.H.L., Liu, A., Chen, W.S.: Pattern discovery of fuzzy time series for financial prediction. IEEE Trans. Knowl. Data Eng. 18(5), 613–625 (2006)

    Article  Google Scholar 

  2. Arroyo, J.: Forecasting candlesticks time series with locally weighted learning methods. In: Locarek-Junge, H., Weihs, C. (eds.) Classification as a Tool for Research, pp. 603–611. Springer, Heidelberg (2010)

    Google Scholar 

  3. Naranjo, R., Meco, A., Arroyo, J., Santos, M.: An intelligent trading system with fuzzy rules and fuzzy capital management. Int. J. Intell. Syst. 30, 963–983 (2015)

    Article  Google Scholar 

  4. Ijegwa, A.D., Rebecca, V.O., Olusegun, F., Isaac, O.O.: A predictive stock market technical analysis using fuzzy logic. Comput. Inf. Sci. 7(3), 1 (2014)

    Google Scholar 

  5. Ravichandra, T., Thingom, C.: Stock price forecasting using ANN method. In: Satapathy, S.C., Mandal, J.K., Udgata, S.K., Bhateja, V. (eds.) Information Systems Design and Intelligent Applications. AISC, vol. 435, pp. 599–605. Springer, Heidelberg (2016). doi:10.1007/978-81-322-2757-1_59

    Chapter  Google Scholar 

  6. Wang, J., Wang, J.: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing 156, 68–78 (2015)

    Article  Google Scholar 

  7. Chen, Y.J., Chen, Y.M., Lu, C.L.: Enhancement of stock market forecasting using an improved fundamental analysis-based approach. Soft Comput. 1–23 (2016)

    Google Scholar 

  8. Cao, R., Liang, X., Ni, Z.: Stock price forecasting with support vector machines based on web financial information sentiment analysis. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS, vol. 7713, pp. 527–538. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35527-1_44

    Chapter  Google Scholar 

  9. Chmielewski, L., Janowicz, M., Kaleta, J., Orłowski, A.: Pattern recognition in the Japanese candlesticks. In: Wiliński, A., El Fray, I., Pejaś, J. (eds.) Soft Computing in Computer and Information Science. AISC, vol. 7713, pp. 227–234. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15147-2_19

    Chapter  Google Scholar 

  10. Chmielewski, L.J., Janowicz, M., Orłowski, A.: Prediction of trend reversals in stock market by classification of Japanese candlesticks. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 641–647. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26227-7_60

    Chapter  Google Scholar 

  11. Yin, J., Si, Y. W., Gong, Z.: Financial time series segmentation based on Turning Points. In: Proceedings of the 2011 International Conference on System Science and Engineering, pp. 394–399. IEEE (2011)

    Google Scholar 

  12. Wan, Y., Gong, X., Si, Y.W.: Effect of segmentation on financial time series pattern matching. Appl. Soft Comput. 38, 346–359 (2016)

    Article  Google Scholar 

  13. Banavas, G.N., Denham, S., Denham, M.J.: Fast nonlinear deterministic forecasting of segmented stock indices using pattern matching and embedding techniques. In: Computing in Economics and Finance, p. 64 (2000)

    Google Scholar 

  14. Si, Y.W., Yin, J.: OBST-based segmentation approach to financial time series. Eng. Appl. Artif. Intell. 26(10), 2581–2596 (2013)

    Article  Google Scholar 

  15. López, V., Santos, M., Montero, J.: Fuzzy specification in real estate market decision making. Int. J. Comput. Intell. Syst. 3(1), 8–20 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Naranjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Naranjo, R., Santos, M. (2017). Fuzzy Candlesticks Forecasting Using Pattern Recognition for Stock Markets. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics