Abstract
This paper presents a prediction system based on fuzzy modeling of Japanese candlesticks. The prediction is performed using the pattern recognition methodology and applying a lazy and nonparametric classification technique, k-Nearest Neighbours (k-NN). The Japanese candlestick chart summarizes the trading period of a commodity with only 4 parameters (open, high, low and close). The main idea of the decision system implemented in this article is to predict with accuracy, based on this vague information from previous sessions, the performance of future sessions. Therefore, investors could have valuable information about the next session and set their investment strategies.
Similar content being viewed by others
References
Lee, C.H.L., Liu, A., Chen, W.S.: Pattern discovery of fuzzy time series for financial prediction. IEEE Trans. Knowl. Data Eng. 18(5), 613–625 (2006)
Arroyo, J.: Forecasting candlesticks time series with locally weighted learning methods. In: Locarek-Junge, H., Weihs, C. (eds.) Classification as a Tool for Research, pp. 603–611. Springer, Heidelberg (2010)
Naranjo, R., Meco, A., Arroyo, J., Santos, M.: An intelligent trading system with fuzzy rules and fuzzy capital management. Int. J. Intell. Syst. 30, 963–983 (2015)
Ijegwa, A.D., Rebecca, V.O., Olusegun, F., Isaac, O.O.: A predictive stock market technical analysis using fuzzy logic. Comput. Inf. Sci. 7(3), 1 (2014)
Ravichandra, T., Thingom, C.: Stock price forecasting using ANN method. In: Satapathy, S.C., Mandal, J.K., Udgata, S.K., Bhateja, V. (eds.) Information Systems Design and Intelligent Applications. AISC, vol. 435, pp. 599–605. Springer, Heidelberg (2016). doi:10.1007/978-81-322-2757-1_59
Wang, J., Wang, J.: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing 156, 68–78 (2015)
Chen, Y.J., Chen, Y.M., Lu, C.L.: Enhancement of stock market forecasting using an improved fundamental analysis-based approach. Soft Comput. 1–23 (2016)
Cao, R., Liang, X., Ni, Z.: Stock price forecasting with support vector machines based on web financial information sentiment analysis. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS, vol. 7713, pp. 527–538. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35527-1_44
Chmielewski, L., Janowicz, M., Kaleta, J., Orłowski, A.: Pattern recognition in the Japanese candlesticks. In: Wiliński, A., El Fray, I., Pejaś, J. (eds.) Soft Computing in Computer and Information Science. AISC, vol. 7713, pp. 227–234. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15147-2_19
Chmielewski, L.J., Janowicz, M., Orłowski, A.: Prediction of trend reversals in stock market by classification of Japanese candlesticks. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 641–647. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26227-7_60
Yin, J., Si, Y. W., Gong, Z.: Financial time series segmentation based on Turning Points. In: Proceedings of the 2011 International Conference on System Science and Engineering, pp. 394–399. IEEE (2011)
Wan, Y., Gong, X., Si, Y.W.: Effect of segmentation on financial time series pattern matching. Appl. Soft Comput. 38, 346–359 (2016)
Banavas, G.N., Denham, S., Denham, M.J.: Fast nonlinear deterministic forecasting of segmented stock indices using pattern matching and embedding techniques. In: Computing in Economics and Finance, p. 64 (2000)
Si, Y.W., Yin, J.: OBST-based segmentation approach to financial time series. Eng. Appl. Artif. Intell. 26(10), 2581–2596 (2013)
López, V., Santos, M., Montero, J.: Fuzzy specification in real estate market decision making. Int. J. Comput. Intell. Syst. 3(1), 8–20 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Naranjo, R., Santos, M. (2017). Fuzzy Candlesticks Forecasting Using Pattern Recognition for Stock Markets. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-47364-2_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47363-5
Online ISBN: 978-3-319-47364-2
eBook Packages: EngineeringEngineering (R0)