Nothing Special   »   [go: up one dir, main page]

Skip to main content

Harnessing Background Knowledge for E-Learning Recommendation

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXXIII (SGAI 2016)

Abstract

The growing availability of good quality, learning-focused content on the Web makes it an excellent source of resources for e-learning systems. However, learners can find it hard to retrieve material well-aligned with their learning goals because of the difficulty in assembling effective keyword searches due to both an inherent lack of domain knowledge, and the unfamiliar vocabulary often employed by domain experts. We take a step towards bridging this semantic gap by introducing a novel method that automatically creates custom background knowledge in the form of a set of rich concepts related to the selected learning domain. Further, we develop a hybrid approach that allows the background knowledge to influence retrieval in the recommendation of new learning materials by leveraging the vocabulary associated with our discovered concepts in the representation process. We evaluate the effectiveness of our approach on a dataset of Machine Learning and Data Mining papers and show it to outperform the benchmark methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://snowball.tartarus.org/algorithms/english/stop.txt.

References

  1. Agrawal, R., Chakraborty, S., Gollapudi, S., Kannan, A., Kenthapadi, K.: Quality of textbooks: an empirical study. In: ACM Symposium on Computing for Development, pp. 16:1–16:1 (2012)

    Google Scholar 

  2. Beliga, S., Meštrović, A., Martinčić-Ipšić, S.: An overview of graph-based keyword extraction methods and approaches. J. Inf. Organ. Sci. 39(1), 1–20 (2015)

    Google Scholar 

  3. Bousbahi, F., Chorfi, H.: MOOC-Rec: a case based recommender system for MOOCs. Proc. Soc. Behav. Sci. 195, 1813–1822 (2015)

    Article  Google Scholar 

  4. Boyce, S., Pahl, C.: Developing domain ontologies for course content. J. Educ. Technol. Soc. 10(3), 275–288 (2007)

    Google Scholar 

  5. Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17(2), 271–284 (2014)

    Article  Google Scholar 

  6. Chen, Z., Liu, B.: Topic modeling using topics from many domains, lifelong learning and big data. In: 31st International Conference on Machine Learning, pp. 703–711 (2014)

    Google Scholar 

  7. Coenen, F., Leng, P., Sanderson, R., Wang, Y.J.: Statistical identification of key phrases for text classification. In: Machine Learning and Data Mining in Pattern Recognition, pp. 838–853. Springer (2007)

    Google Scholar 

  8. Dietze, S., Yu, H.Q., Giordano, D., Kaldoudi, E., Dovrolis, N., Taibi, D.: Linked education: interlinking educational resources and the web of data. In: 27th Annual ACM Symposium on Applied Computing, pp. 366–371 (2012)

    Google Scholar 

  9. Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., Mueller, E.T.: Watson: beyond Jeopardy!. Artif. Intell. 199, 93–105 (2013)

    Article  Google Scholar 

  10. Hands, A.: Microsoft academic search. Tech. Serv. Q. 29(3), 251–252 (2012)

    Article  Google Scholar 

  11. Nasraoui, O., Zhuhadar, L.: Improving recall and precision of a personalized semantic search engine for e-learning. In: 4th International Conference on Digital Society, pp. 216–221. IEEE (2010)

    Google Scholar 

  12. Panagiotis, S., Ioannis, P., Christos, G., Achilles, K.: APLe: agents for personalized learning in distance learning. In: 7th International Conference on Computer Supported Education, pp. 37–56. Springer (2016)

    Google Scholar 

  13. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  14. Qureshi, M.A., O’Riordan, C., Pasi, G.: Exploiting Wikipedia to identify domain-specific key terms/phrases from a short-text collection. In: 5th Italian Information Retrieval Workshop, pp. 63–74 (2014)

    Google Scholar 

  15. Ruiz-Iniesta, A., Jimenez-Diaz, G., Gomez-Albarran, M.: A semantically enriched context-aware OER recommendation strategy and its application to a computer science OER repository. IEEE Trans. Educ. 57(4), 255–260 (2014)

    Article  Google Scholar 

  16. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  17. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic Wikipedia. In: 15th International Conference on World Wide Web, pp. 585–594. ACM (2006)

    Google Scholar 

  18. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: Practical automatic keyphrase extraction. In: 4th ACM Conference on Digital libraries, pp. 254–255 (1999)

    Google Scholar 

  19. Yang, H.L., Lai, C.Y.: Motivations of Wikipedia content contributors. Comput. Hum. Behav. 26(6), 1377–1383 (2010)

    Article  Google Scholar 

  20. Yang, K., Chen, Z., Cai, Y., Huang, D., Leung, H.: Improved automatic keyword extraction given more semantic knowledge. In: International Conference on Database Systems for Advanced Applications, pp. 112–125. Springer (2016)

    Google Scholar 

  21. Zhang, X., Liu, J., Cole, M.: Task topic knowledge vs. background domain knowledge: impact of two types of knowledge on user search performance. In: Advances in Information Systems and Technologies, pp. 179–191. Springer (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart Massie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mbipom, B., Craw, S., Massie, S. (2016). Harnessing Background Knowledge for E-Learning Recommendation. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXXIII. SGAI 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-47175-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47175-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47174-7

  • Online ISBN: 978-3-319-47175-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics