Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modern ICT and Mechatronic Systems in Contemporary Mining Industry

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9920))

Included in the following conference series:

Abstract

The paper deals with modern ICT techniques and systems, and mechatronic systems for mining industry, with particular attention paid to results achieved by the authors and their research groups. IT systems concern process and machinery monitoring, fault detection and isolation of processes and machinery, and assessment of risk and hazards in mining industry. Furthermore, innovative applications of AI methods are addressed, including pattern recognition and interpretation for process control, classification of seismic events, estimating loads of conveyors, and the others. Special attention is paid to applications of mechatronic solutions, such as: unmanned working machinery and longwalls in coal mines, and specialised robots for basic work. Mobile robots for inspecting areas of mines affected by catastrophes are presented, too. Moreover, recent communication solutions for collision avoidance, localisation of mining machinery, and wireless transmission are addressed. The paper concludes with most likely development of ICT and mechatronic systems for mining industry.

The paper includes some results achieved during research carried out in the framework of research projects: Disesor partially financed by Polish National Centre for Research and Development under grant No. PBS2/B9/20/2013; TeleRescuer partially financed by the Research Fund for Coal and Steel under grant No. RFCR-CT-2014-00002 and by the Polish Ministry for Science and High Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartelmus, W., Zimroz, R.: Vibration condition monitoring of planetary gearbox under varying external load. Mech. Syst. Signal Proc. 23(1), 246–257 (2009). Special Issue: Non-linear Structural Dynamics

    Article  Google Scholar 

  2. Bartkowiak, A., Zimroz, R.: Outliers analysis and one class classification approach for planetary gearbox diagnosis. J. Phys. Conf. Ser. 305(1), 012031 (2011)

    Article  Google Scholar 

  3. Bartkowiak, A., Zimroz, R.: Dimensionality reduction via variables selection - linear and nonlinear approaches with application to vibration-based condition monitoring of planetary gearbox. Appl. Acoust. 77, 169–177 (2014)

    Article  Google Scholar 

  4. Brzychczy, E.: The intelligent computer-aided support in designing mining operations at underground hard coal mines. In: 23th World Mining Congress, August 11–15 2013, Montreal (2013)

    Google Scholar 

  5. Cempel, C.: Multidimensional condition monitoring of mechanical systems in operation. Mech. Syst. Signal Process. 17(6), 1291–1303 (2003)

    Article  Google Scholar 

  6. Chekushina, E.V., Vorobev, A.E., Chekushina, T.V.: Use of expert systems in the mining. Middle-East J. Sci. Res. 18(1), 1–3 (2013)

    Google Scholar 

  7. Cholewa, W.: Expert systems in technical diagnostics. In: Korbicz, J., Kowalczuk, Z., Kościelny, J., Cholewa, W. (eds.) Fault Diagnosis, pp. 591–631. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Cioch, W., Knapik, O., Leśkow, J.: Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics. Mech. Syst. Signal Process. 1(38), 55–64 (2013)

    Article  Google Scholar 

  9. COIG. http://www.coig.pl/en/mining, (as of Aug. 2016)

  10. CSIRO. Mining safety and automation. http://www.csiro.au/en/Research/EF/Areas/Coal-mining/Mining-safety-and-automation, (as of Aug. 2016)

  11. EC-Europa. https://ec.europa.eu/growth/tools-databases/eip-rawmaterials/en/content/strategic-implementation-plan-sip-0, (as of Aug. 2016)

  12. EIT. http://eitrawmaterials.eu/, (as of Aug. 2016)

  13. EU-Robotics. https://eu-robotics.net/, (as of Aug. 2016)

  14. Golak, S., Wieczorek, T.: Koncepcja system ekspertowego do oceny i poprawy ekoefektywności kopalń (in Polish). Studia Informatica 116(2), 213–222 (2014)

    Google Scholar 

  15. Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business Analytics Applications. Chapman & Hall/CRC, Boca Raton (2013)

    Google Scholar 

  16. IBM. http://www-935.ibm.com/industries/metalsmining/, (as of Aug. 2016)

  17. Janusz, A., Sikora, M., Wróbel, L., Stawicki, S., Grzegorowski, M., Wojtas, P., Slezak, D.: Mining data from coal mines: IJCRS’15 data challenge. In: Yao, Y. (ed.) RSFDGrC 2015. LNCS, vol. 9437, pp. 429–438. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25783-9_38

    Chapter  Google Scholar 

  18. Kabiesz, J.: Effect of the form of data on the quality of mine tremors hazard forecasting using neural networks. Geotech. Geol. Eng. 24(5), 1131–1147 (2006)

    Article  Google Scholar 

  19. Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Comput. Chem. Eng. 33(4), 795–814 (2009)

    Article  Google Scholar 

  20. Kalisch, M., Przystałka, P., Timofiejczuk, A.: A concept of meta-learning schemes for context-based fault diagnosis. In: XV International Technical Systems Degradation Conference, TSD International Conference, Liptovsky Mikulas, 30 March – 2 April 2016, pp. 113–114 (2016)

    Google Scholar 

  21. Kozielski, M., Sikora, M., Wróbel, Ł.: Disesor - decision support system for mining industry. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5 of Annals of Computer Science and Information Systems, pp. 67–74. IEEE (2015)

    Google Scholar 

  22. Leica Geosystems. Autonomous and remote controlled mining. http://mining.leica-geosystems.com/news/all-news/autonomous-and-remote-controlled-mining, (as of Aug. 2016)

  23. Liebowitz, J.: The Handbook of Applied Expert Systems. CRC Press LLC, Boca Raton (1997)

    MATH  Google Scholar 

  24. Moczulski, W., Cyran, K., Januszka, M., Novak, P., Timofiejczuk, A.: Telerescuer - an innovative robotized system for supporting mining rescuers by inspecting roadways affected by catastrophes. In: 24th World Mining Congress (2016)

    Google Scholar 

  25. Przystałka, P., Moczulski, W., Timofiejczuk, A., Kalisch, M., Sikora, M.: Development of Expert System Shell for Coal Mining Industry. Springer, Heidelberg (2016)

    Google Scholar 

  26. RapidMiner: RapidMiner software website, August 2016. https://rapidminer.com/

  27. Sáez, J.A., Krawczyk, B., Woźniak, M.: Analyzing the oversampling of different classes, types of examples in multi-class imbalanced datasets. Pattern Recogn. 57(C), 164–178 (2016)

    Article  Google Scholar 

  28. Sikora, M., Moczulski, W., Timofiejczuk, A., Przystałka, P., Ślȩzak, D.: DISESOR: An integrated shell decision support system for systems of monitoring processes, equipment and hazards. In: Mechanizacja, automatyzacja i robotyzacja w górnictwie, pp. 39–47 (2015)

    Google Scholar 

  29. Sikora, M., Przystałka, P., (eds.): Zintegrowany, szkieletowy system wspomagania decyzji dla systemów monitorowania procesów, urza̧dzeń i zagrożeń (in Polish). Publishing House of the Institute for Sustainable Technologies, National Research Institute, Radom, Poland (2016) (in print)

    Google Scholar 

  30. Sokołowski, J., Obuchowski, J., Madziarz, M., Wyłomańska, A., Zimroz, R.: Features based on instantaneous frequency for seismic signals clustering. J. VibroEng. 18(3), 1654–1667 (2016)

    Article  Google Scholar 

  31. Stefaniak, P., Zimroz, R., Bartelmus, W., Hardygóra, M.: Computerised decision-making support system based on data fusion for machinery systems management and maintenance. Appl. Mech. Mater. 683, 108–113 (2014)

    Article  Google Scholar 

  32. Wang, C., Wang, Z.: Design and implementation of safety expert information management system of coal mine based on fault tree. J. Softw. 5(10), 1114–1120 (2010)

    Google Scholar 

  33. Xu, X., Dou, L., Lu, C., Zhang, Y.: Frequency spectrum analysis on micro-seismic signal of rock bursts induced by dynamic disturbance. Min. Sci. Technol. 20(5), 682–685 (2010)

    Google Scholar 

  34. Yingxu, Q., Hongguo, Y.: Design and application of expert system for coal mine safety. In: Second IITA International Conference on Geoscience and Remote Sensing (2010)

    Google Scholar 

  35. Zimroz, R., Hardygóra, M., Błażej, R.: Maintenance of belt conveyor systems in Poland - an overview. In: Proceedings of the 12th International Symposium Continuous Surface Mining - Aachen, pp. 21–30. Springer, Heidelberg (2015)

    Google Scholar 

  36. Zimroz, R., Wodecki, J., Król, R., Andrzejewski, M., Śliwiński, P., Stefaniak, P.: Self-propelled Mining Machine Monitoring System - Data Validation, Processing and Analysis. Springer, Heidelberg (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Moczulski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Moczulski, W., Przystałka, P., Sikora, M., Zimroz, R. (2016). Modern ICT and Mechatronic Systems in Contemporary Mining Industry. In: Flores, V., et al. Rough Sets. IJCRS 2016. Lecture Notes in Computer Science(), vol 9920. Springer, Cham. https://doi.org/10.1007/978-3-319-47160-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47160-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47159-4

  • Online ISBN: 978-3-319-47160-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics