Abstract
In the model-centric approach to model-driven development, the models used are sufficiently detailed to be executed. Being able to execute the model directly, without any intermediate model-to-code translation, has a number of advantages. The model is always up-to-date and runtime updates of the model are possible. This paper presents a model interpreter for timed automata, a formalism often used for modeling and verification of real-time systems. The model interpreter supports real-time system features like simultaneous execution, system wide signals, a ticking clock, and time constraints. Many existing formal representations can be verified, and many existing DSMLs can be executed. It is the combination of being both verifiable and executable that makes our approach rather unique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See the uppaal.org website for a list of industrial projects using timed automata and the Uppaal verification tool.
References
ActivFORMS: Active Formal Models for Self-Adaptation (2016). https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Anlauff, M.: XASM - an extensible, component-based abstract state machines language. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000)
Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)
Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)
Fowler, M.: Domain-specific Languages. Pearson Education, Upper Saddle River (2010)
Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional uncertainty via model-driven adaptivity. In: Proceedings of the International Conference on Software Engineering, ICSE 2013, pp. 33–42. IEEE Press, Piscataway (2013)
Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power controller using the real-time model checker UPPAAL. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 277. Springer, Heidelberg (1999)
Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)
Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-managing Systems, SEAMS, pp. 125–134. ACM, New York (2014)
Iglesia, D., Weyns, D.: MAPE-K formal templates to rigorously design behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1–15:31 (2015)
Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.-P.: Formalization of fUML: an application to process verification. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 347–363. Springer, Heidelberg (2014)
Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architectures. Addison-Wesley Longman Publishing Co. Inc., Boston (2002)
Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(K) parser generator. Softw. Pract. Exper. 25(7), 789–810 (1995)
Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Comput. Soc. 39(2), 25 (2006)
Shevtsov, S., Iftikhar, M.U., Weyns, D.: SimCA vs ActivFORMS: comparing control- and architecture-based adaptation on the TAS exemplar. In: Proceedings of the 1st International Workshop on Control Theory for Software Engineering, CTSE , pp. 1–8. ACM, New York (2015)
Spielmann, M., Machines, A.S.: Verification problems and complexity. PhD thesis, Bibliothek der RWTH Aachen (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Iftikhar, M.U., Lundberg, J., Weyns, D. (2016). A Model Interpreter for Timed Automata. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques. ISoLA 2016. Lecture Notes in Computer Science(), vol 9952. Springer, Cham. https://doi.org/10.1007/978-3-319-47166-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-47166-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47165-5
Online ISBN: 978-3-319-47166-2
eBook Packages: Computer ScienceComputer Science (R0)