Nothing Special   »   [go: up one dir, main page]

Skip to main content

Search Based Clustering for Protecting Software with Diversified Updates

  • Conference paper
  • First Online:
Search Based Software Engineering (SSBSE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9962))

Included in the following conference series:

Abstract

Reverse engineering is usually the stepping stone of a variety of attacks aiming at identifying sensitive information (keys, credentials, data, algorithms) or vulnerabilities and flaws for broader exploitation. Software applications are usually deployed as identical binary code installed on millions of computers, enabling an adversary to develop a generic reverse-engineering strategy that, if working on one code instance, could be applied to crack all the other instances. A solution to mitigate this problem is represented by Software Diversity, which aims at creating several structurally different (but functionally equivalent) binary code versions out of the same source code, so that even if a successful attack can be elaborated for one version, it should not work on a diversified version. In this paper, we address the problem of maximizing software diversity from a search-based optimization point of view. The program to protect is subject to a catalogue of transformations to generate many candidate versions. The problem of selecting the subset of most diversified versions to be deployed is formulated as an optimisation problem, that we tackle with different search heuristics. We show the applicability of this approach on some popular Android apps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    BSA Global Software Piracy Survey: http://globalstudy.bsa.org/2016/.

  2. 2.

    State of Application Security: https://www.arxan.com/resources/state-of-

    application-security/.

  3. 3.

    http://www.zelix.com/klassmaster/.

  4. 4.

    Our approach is general, and it is compatible with any other pairwise similarity metric.

  5. 5.

    https://rzip.samba.org/.

  6. 6.

    The number of atomic obfuscations m can be actually larger, because some combinations cause an error in the obfuscation tool, or simply do not work. Thus, more atomic obfuscations are required to meet the target number of versions n.

References

  1. Anckaert, B., De Sutter, B., De Bosschere, K.: Software piracy prevention through diversity. In: Proceedings of the 4th ACM workshop on Digital Rights Management, pp. 63–71. ACM (2004)

    Google Scholar 

  2. Arcuri, A., Fraser, G.: On parameter tuning in search based software engineering. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 33–47. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evaluation of clone detection tools. IEEE Trans. Softw. Eng. 33(9), 577–591 (2007)

    Article  Google Scholar 

  4. Capiluppi, A., Falcarin, P., Boldyreff, C.: Code defactoring: evaluating the effectiveness of java obfuscations. In: Proceedings of the 19th Working Conference on Reverse Engineering, WCRE 2012, pp. 71–80. IEEE (2012)

    Google Scholar 

  5. Cebrián, M., Alfonseca, M., Ortega, A., et al.: Common pitfalls using the normalized compression distance: what to watch out for in a compressor. Commun. Inf. Syst. 5(4), 367–384 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Ceccato, M., Capiluppi, A., Falcarin, P., Boldyreff, C.: A large study on the effect of code obfuscation on the quality of java code. Empirical Softw. Eng. 20(6), 1486–1524 (2015)

    Article  Google Scholar 

  7. Cohen, F.B.: Operating system protection through program evolution. Comput. Secur. 12(6), 565–584 (1993)

    Article  Google Scholar 

  8. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Software Protection. Addison-Wesley Professional, Boston (2009)

    Google Scholar 

  9. Coppens, B., De Sutter, B., Maebe, J.: Feedback-driven binary code diversification. ACM Trans. Archit. Code Optim. 9(4), 24:1–24:26 (2013)

    Article  Google Scholar 

  10. Davi, L., Dmitrienko, A., Nürnberger, S., Sadeghi, A.R.: XIFER: a software diversity tool against code-reuse attacks. In: 4th ACM International Workshop on Wireless of the Students, by the Students, for the Students (S3 2012), August 2012

    Google Scholar 

  11. Falcarin, P., Collberg, C., Atallah, M., Jakubowski, M.: Guest editors’ introduction: software protection. IEEE Softw. 28(2), 24–27 (2011)

    Article  Google Scholar 

  12. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In: The Sixth Workshop on Hot Topics in Operating Systems, pp. 67–72, May 1997

    Google Scholar 

  13. Franz, M.: E unibus pluram: massive-scale software diversity as a defense mechanism. In: Proceedings of the 2010 Workshop on New Security Paradigms, pp. 7–16. ACM (2010)

    Google Scholar 

  14. Freire, M., Cebrian, M., del Rosal, E.: Uncovering plagiarism networks. arXiv preprint cs/0703136 (2007)

    Google Scholar 

  15. Gupta, A., Kerr, S., Kirkpatrick, M.S., Bertino, E.: Marlin: a fine grained randomization approach to defend against ROP attacks. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 293–306. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Holland, D.A., Lim, A.T., Seltzer, M.I.: An architecture a day keeps the hacker away. ACM SIGARCH Comput. Archit. News 33(1), 34–41 (2005)

    Article  Google Scholar 

  17. Jackson, T., et al.: Compiler-generated software diversity. In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.) Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, Advances in Information Security. Advances in Information Security, vol. 54, pp. 77–98. Springer, New York (2011). doi:10.1007/978-1-4614-0977-9_4

    Chapter  Google Scholar 

  18. Just, J.E., Cornwell, M.: Review and analysis of synthetic diversity for breaking monocultures. In: Proceedings of the 2004 ACM Workshop on Rapid Malcode, pp. 23–32. ACM (2004)

    Google Scholar 

  19. Larsen, P., Brunthaler, S., Franz, M.: Security through diversity: are we there yet? IEEE Secur. Priv. 12(2), 28–35 (2014)

    Article  Google Scholar 

  20. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diversity. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 276–291, May 2014

    Google Scholar 

  21. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

    Article  Google Scholar 

  22. Martin, W., Harman, M., Jia, Y., Sarro, F., Zhang, Y.: The app. sampling problem for app. store mining. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pp. 123–133. IEEE (2015)

    Google Scholar 

  23. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verification Reliab. 14(2), 105–156 (2004)

    Article  Google Scholar 

  24. Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  25. Myles, G., Collberg, C.S.: Detecting software theft via whole program path birthmarks. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 404–415. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Shioji, E., Kawakoya, Y., Iwamura, M., Hariu, T.: Code shredding: byte-granular randomization of program layout for detecting code-reuse attacks. In: Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC 2012, pp. 309–318. ACM (2012)

    Google Scholar 

  27. Van Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosschere, K.: Diablo: a reliable, retargetable and extensible link-time rewriting framework. In: 2005 Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, pp. 7–12. IEEE (2005)

    Google Scholar 

  28. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic programming. In: Proceedings of 31st International Conference on Software Engineering, pp. 364–374 (2009)

    Google Scholar 

  29. Williams, D., Hu, W., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong, A.: Security through diversity: leveraging virtual machine technology. IEEE Secur. Priv. 7(1), 26–33 (2009)

    Article  Google Scholar 

  30. Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Comput. Virol. 2(3), 211–229 (2006)

    Article  Google Scholar 

  31. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent runtime randomization for security. In: 2003 Proceedings of the 22nd International Symposium on Reliable Distributed Systems, pp. 260–269. IEEE (2003)

    Google Scholar 

Download references

Acknowledgement

The authors want to thank Prof. Mark Harman who was involved in the initial stages of this work, and contributed by suggesting the use of clustering for this search problem. This research has been funded by the European Union 7th Framework Programme (FP7/2007-2013), under grant agreement number 609734 - ASPIRE project (Advanced Software Protection: Integration Research and Exploitation), http://www.aspire-fp7.eu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Falcarin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ceccato, M., Falcarin, P., Cabutto, A., Frezghi, Y.W., Staicu, CA. (2016). Search Based Clustering for Protecting Software with Diversified Updates. In: Sarro, F., Deb, K. (eds) Search Based Software Engineering. SSBSE 2016. Lecture Notes in Computer Science(), vol 9962. Springer, Cham. https://doi.org/10.1007/978-3-319-47106-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47106-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47105-1

  • Online ISBN: 978-3-319-47106-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics