Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing Grammatical Evolution’s Mapping Processes on Feature Generation for Pattern Recognition Problems

  • Chapter
  • First Online:
Nature-Inspired Design of Hybrid Intelligent Systems

Abstract

Grammatical Evolution (GE) is a grammar-based form of Genetic Programming. In GE, a Mapping Process (MP) and a Backus–Naur Form grammar (defined in the problem context) are used to transform each individual’s genotype into its phenotype form (functional representation). There are several MPs proposed in the state-of-the-art, each of them defines how the individual’s genes are used to build its phenotype form. This paper compares two MPs: the Depth-First standard map and the Position Independent Grammatical Evolution (πGE). The comparison was performed using as use case the problem of the selection and generation of features for pattern recognition problems. A Wilcoxon Rank-Sum test was used to compare and validate the results of the different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Michael Q’Neill and Conor Ryan, GRAMMATICAL EVOLUTION Evolutionary Automatic Programming in an Arbitrary Language, 1st edition, Springer, 2003.

    Google Scholar 

  2. Peter F. Stadler and Bärbel M. R. Stadler, Genotype-Phenotype Maps, Biological Theory, Vol. 1, pp. 268-279, 2006.

    Google Scholar 

  3. David Fagan, Michael O’Neill Edgar Galvan-Lopez, Anthony Brabazon and Sean McGarraghy, An Analysis of Genotype-Phenotype Maps in Grammatical Evolution, Genetic Programming Volume 6021 of the series Lecture Notes in Computer Science, pp 62-73, Springer, 2010.

    Google Scholar 

  4. Eoin Murphy, Michael O’Neill, Edgar Galván-López and Anthony Brabazon, Tree-Adjunct Grammatical Evolution, 2010 IEEE Congress on Evolutionary Computation (CEC), 2010.

    Google Scholar 

  5. Anthony Brabazon, Michael O’Neill and Seán McGarraghy, Natural Computing Algorithms, Natural Computing Series, Springer, 2015.

    Google Scholar 

  6. Michael O’Neill, Anthony Brabazon, Miguel Nicolau, Sean Mc Garraghy, and Peter Keenan, πGrammatical Evolution, Genetic and Evolutionary Computation — GECCO 2004, Springer, 2004.

    Google Scholar 

  7. Paulo Urbano and Loukas Georgiou, Improving Grammatical Evolution in Santa Fe Trail using Novelty Search, Home advances in artificial life, ECAL 2013.

    Google Scholar 

  8. Loukas Georgiou and W. J. Teahan, Grammatical Evolution and the Santa Fe TrailProblem, ICEC 2010 - Proceedings of the International Conference on Evolutionary Computation, 2010.

    Google Scholar 

  9. Takuya Kuroda, Hiroto Iwasawa, Tewodros Awgichew and Eisuke Kita, Application of Improved Grammatical Evolution to Santa Fe Trail Problems, Natural Computing Volume 2 of the series Proceedings in Information and Communications Technology, pp. 218-225, 2010.

    Google Scholar 

  10. Dimitris Gavrilis, Ioannis G. Tsoulos and Evangelos Dermatas, Selecting and constructing features using grammatical evolution, Pattern Recognition Letters 29, 1358–1365, Elsevier, 2008.

    Google Scholar 

  11. M. Lichman, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School ofInformation and Computer Science, 2013.

  12. Marco Aurelio Sotelo-Figueroa, Héctor José Puga Soberanes, Juan Martín Carpio, Héctor J. Fraire Huacuja, Laura Cruz Reyes and Jorge Alberto Soria-Alcaraz, Improving the Bin Packing Heuristic through Grammatical Evolution Based on Swarm Intelligence, Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, 2014.

    Google Scholar 

  13. I. Dempsey, M. O’Neill, and A. Brabazon, Foundations in Grammatical Evolution for Dynamic Environments, vol. 194, Springer, 2009.

    Google Scholar 

  14. M. O’Neill and A. Brabazon, Grammatical differential evolution, in Proceedings of the International Conference on Artificial Intelligence (ICAI’06), CSEA Press, Las Vegas, Nev, USA, 2006.

    Google Scholar 

  15. P. Devijver and J.Kittler, Pattern recognition: A statistical approach, Prentice/Hall International, 448 p, 1982.

    Google Scholar 

  16. Marques de Sá, Pattern Recognition Concepts, Methods and Applications, J.P, Springer, 2001.

    Google Scholar 

  17. Menahem Friedman and Abraham Kandel, Introduction to pattern recognition: statistical, structural, neural, and fuzzy logic approaches, volume 32 of Machine perception and artificial intelligence. Singapore River Edge, N.J. World Scientific, 1999.

    Google Scholar 

  18. Tatjana Pavlenko, On feature selection, curse-of-dimensionality and error probability in discriminant analysis, Journal of Statistical Planning and Inference Volume 115, Issue 2, pp. 565–584, Elsevier, 2003.

    Google Scholar 

  19. D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 2nd ed, CRC, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentín Calzada-Ledesma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Calzada-Ledesma, V., Puga-Soberanes, H.J., Rojas-Domínguez, A., Ornelas-Rodríguez, M., Carpio-Valadez, J.M., Gómez-Santillán, C.G. (2017). Comparing Grammatical Evolution’s Mapping Processes on Feature Generation for Pattern Recognition Problems. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-319-47054-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47054-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47053-5

  • Online ISBN: 978-3-319-47054-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics