Nothing Special   »   [go: up one dir, main page]

Skip to main content

Summarizing Simulation Results Using Causally-Relevant States

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems (AAMAS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10003))

Included in the following conference series:

Abstract

As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adiga, A., Mortveit, H.S., Wu, S.: Route stability in large-scale transportation models. In: Main 2013: The Workshop on Multiagent Interaction Networks at AAMAS 2013, Saint Paul, Minnesota, USA (2013)

    Google Scholar 

  2. Barrett, C., Beckman, R., Berkbigler, K., Bisset, K., Bush, B., Campbell, K., Eubank, S., Henson, K., Hurford, J., Kubicek, D., Marathe, M., Romero, P., Smith, J., Smith, L., Speckman, P., Stretz, P., Thayer, G., Eeckhout, E., Williams, M.D.: TRANSIMS: transportation analysis simulation system. Technical report LA-UR-00-1725. An earlier version appears as a 7 part technical report series LA-UR-99-1658 and LA-UR-99-2574 to LA-UR-99-2580, Los Alamos National Laboratory Unclassified Report (2001)

    Google Scholar 

  3. Barrett, C., Eubank, S., Marathe, A., Marathe, M., Swarup, S.: Synthetic information environments for policy informatics: a distributed cognition perspective. In: Johnston, E. (ed.) Governance in the Information Era: Theory and Practice of Policy Informatics, pp. 267–284. Routledge, New York (2015)

    Google Scholar 

  4. Buddemeier, B.R., Valentine, J.E., Millage, K.K., Brandt, L.D., Region, N.C.: Key response planning factors for the aftermath of nuclear terrorism. Technical report LLNL-TR-512111, Lawrence Livermore National Lab, November 2011

    Google Scholar 

  5. Chandan, S., Saha, S., Barrett, C., Eubank, S., Marathe, A., Marathe, M., Swarup, S., Vullikanti, A.K.: Modeling the interactions between emergency communications and behavior in the aftermath of a disaster. In: The International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP), 2–5 April 2013, Washington DC, USA (2013)

    Google Scholar 

  6. Crutchfield, J.P., Ellison, C.J., Mahoney, J.R.: Time’s barbed arrow: irreversibility, crypticity, and stored information. Phys. Rev. Lett. 103(9), 094101 (2009)

    Article  Google Scholar 

  7. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Lett. 63(2), 105–108 (1989)

    Article  MathSciNet  Google Scholar 

  8. Ellison, C.J., Mahoney, J.R., Crutchfield, J.P.: Prediction, retrodiction, and the amount of information stored in the present. J. Stat. Phys. 136(6), 1005–1034 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–214 (2005)

    Article  Google Scholar 

  10. Goldman, C.V., Zilberstein, S.: Communication-based decomposition mechanisms for decentralized MDPs. J. Artif. Int. Res. 32(1), 169–202 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Marshall, B.D.L., Galea, S.: Formalizing the role of agent-based modeling in causal inference and epidemiology. Am. J. Epidemiol. 181(2), 92–99 (2015)

    Article  Google Scholar 

  12. Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010)

    Google Scholar 

  13. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: Why so? or why no? Functional causality for explaining query answers. In: Proceedings of the 4th International Workshop on Management of Uncertain Data (MUD), pp. 3–17 (2010)

    Google Scholar 

  14. Parikh, N., Swarup, S., Stretz, P.E., Rivers,C.M., Lewis, B.L., Marathe, M.V., Eubank, S.G., Barrett, C.L., Lum, K., Chungbaek, Y.: Modeling human behavior in the aftermath of a hypothetical improvised nuclear detonation. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Saint Paul, MN, USA, May 2013

    Google Scholar 

  15. Parikh, N., Youssef, M., Swarup, S., Eubank, S.: Modeling the effect of transient populations on epidemics in Washington DC. Sci. Rep. 3, Article no. 3152 (2013)

    Google Scholar 

  16. Shahaf, D., Guestrin, C., Horvitz, E.: Metro maps of science. In: Proceedings of the KDD (2012)

    Google Scholar 

  17. Shahaf, D., Guestrin, C., Horvitz, E.: Trains of thought: generating information maps. In: Proceedings of the WWW, Lyon, France (2012)

    Google Scholar 

  18. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104(3/4), 817–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shalizi, C.R., Shalizi, K.L.: Blind construction of optimal nonlinear recursive predictors for discrete sequences. In: Chickering, M., Halpern, J. (eds.) Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence, Banff, Canada, pp. 504–511 (2004)

    Google Scholar 

  20. Sutton, R., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ver Steeg, G., Galstyan, A.: Information transfer in social media. In: Proceedings of WWW (2012)

    Google Scholar 

  22. Walloth, C., Gurr, J.M., Schmidt, J.A. (eds.): Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling. Springer, New York (2014)

    Google Scholar 

  23. Wein, L.M., Choi, Y., Denuit, S.: Analyzing evacuation versus shelter-in-place strategies after a terrorist nuclear detonation. Risk Anal. 30(6), 1315–1327 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We thank our external collaborators and members of the Network Dynamics and Simulation Science Lab (NDSSL) for their suggestions and comments. This work has been supported in part by DTRA CNIMS Contract HDTRA1-11-D-0016-0001, DTRA Grant HDTRA1-11-1-0016, NIH MIDAS Grant 5U01GM070694-11, NIH Grant 1R01GM109718, NSF NetSE Grant CNS-1011769, and NSF SDCI Grant OCI-1032677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Parikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Parikh, N., Marathe, M., Swarup, S. (2016). Summarizing Simulation Results Using Causally-Relevant States. In: Osman, N., Sierra, C. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2016. Lecture Notes in Computer Science(), vol 10003. Springer, Cham. https://doi.org/10.1007/978-3-319-46840-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46840-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46839-6

  • Online ISBN: 978-3-319-46840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics