Nothing Special   »   [go: up one dir, main page]

Skip to main content

NearBucket-LSH: Efficient Similarity Search in P2P Networks

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9939))

Included in the following conference series:

Abstract

We present NearBucket-LSH, an effective algorithm for similarity search in large-scale distributed online social networks organized as peer-to-peer overlays. As communication is a dominant consideration in distributed systems, we focus on minimizing the network cost while guaranteeing good search quality. Our algorithm is based on Locality Sensitive Hashing (LSH), which limits the search to collections of objects, called buckets, that have a high probability to be similar to the query. More specifically, NearBucket-LSH employs an LSH extension that searches in near buckets, and improves search quality but also significantly increases the network cost. We decrease the network cost by considering the internals of both LSH and the P2P overlay, and harnessing their properties to our needs. We show that our NearBucket-LSH increases search quality for a given network cost compared to previous art. In many cases, the search quality increases by more than \(50\,\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that in a general c-dimensional CAN of N nodes, the expected routing length is \(c/4\left( N^{1/c}\right) \) [25], which equals k/2 for \(c=k\) and \(N=2^k\).

  2. 2.

    We transform cosine similarity into angular similarity and then apply the success probability formulas.

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2001)

    Article  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  3. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Effects of user similarity in social media. WSDM 2012, pp. 703–712 (2012)

    Google Scholar 

  4. Bahmani, B., Goel, A., Shinde, R.: Efficient distributed locality sensitive hashing. In: CIKM 2012, pp. 2174–2178 (2012)

    Google Scholar 

  5. Batko, M., Novak, D., Falchi, F., Zezula, P.: Scalability comparison of peer-to-peer similarity search structures. Future Gener. Comp. Syst 24(8), 834–848 (2008)

    Article  Google Scholar 

  6. Buchegger, S., Schiöberg, D., Vu, L.H., Datta, A.: PeerSoN: P2P social networking - early experiences and insights. In: SNS 2009, pp. 46–52, 31 March 2009

    Google Scholar 

  7. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC 2002, pp. 380–388 (2002)

    Google Scholar 

  8. Chierichetti, F., Kumar, R.: LSH-preserving functions and their applications. In: SODA 2012, pp. 1078–1094 (2012)

    Google Scholar 

  9. Cutillo, L.A., Molva, R., Önen, M., Safebook: a distributed privacy preserving online social network. In: WOWMOM, pp. 1–3 (2011)

    Google Scholar 

  10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: SCG 2004, pp. 253–262 (2004)

    Google Scholar 

  11. DBLP. http://www.informatik.uni-trier.de/ley/db/

  12. Falchi, F., Gennaro, C., Zezula, P.: A content–addressable network for similarity search in metric spaces. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005-2006. LNCS, vol. 4125, pp. 98–110. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71661-7_9

    Chapter  Google Scholar 

  13. Friendster. http://www.friendster.com/

  14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: VLDB 1999, pp. 518–529 (1999)

    Google Scholar 

  15. Haghani, P., Michel, S., Aberer, K.: Distributed similarity search in high dimensions using locality sensitive hashing. In EDBT 2009, pp. 744–755 (2009)

    Google Scholar 

  16. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC 1998, pp. 604–613 (1998)

    Google Scholar 

  17. Livejournal. http://www.livejournal.com/

  18. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutorials 7, 72–93 (2005)

    Article  Google Scholar 

  19. Lucene. http://lucene.apache.org/core/

  20. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: VLDB 2007, pp. 950–961 (2007)

    Google Scholar 

  21. Mani, M., Nguyen, A.-M., Crespi, N.: Scope: a prototype for spontaneous P2P social networking. In: PerCom Workshops, pp. 220–225 (2010)

    Google Scholar 

  22. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  23. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  24. Narendula, R., Papaioannou, T.G., Aberer, K.: Towards the realization of decentralized online social networks: an empirical study. In: ICDCS Workshops, pp. 155–162 (2012)

    Google Scholar 

  25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: SIGCOMM 2001, pp. 161–172, New York, NY, USA (2001)

    Google Scholar 

  26. Sundaram, N., Turmukhametova, A., Satish, N., Mostak, T., Indyk, P., Madden, S., Dubey, P.: Streaming similarity search over one billion tweets using parallel locality-sensitive hashing. Proc. VLDB Endow. 6(14), 1930–1941 (2013)

    Article  Google Scholar 

  27. TarsosLSH. https://github.com/jorensix/tarsoslsh

  28. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: WWW 2010, pp. 981–990 (2010)

    Google Scholar 

  29. Yang, J., Leskovec, J.: Defining, evaluating network communities based on ground-truth. In: MDS 2012, pp. 3: 1–3: 8 (2012)

    Google Scholar 

Download references

Acknowledgments

Naama Kraus is grateful to the Hasso-Plattner-Institut (HPI) for the scholarship for doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naama Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kraus, N., Carmel, D., Keidar, I., Orenbach, M. (2016). NearBucket-LSH: Efficient Similarity Search in P2P Networks. In: Amsaleg, L., Houle, M., Schubert, E. (eds) Similarity Search and Applications. SISAP 2016. Lecture Notes in Computer Science(), vol 9939. Springer, Cham. https://doi.org/10.1007/978-3-319-46759-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46759-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46758-0

  • Online ISBN: 978-3-319-46759-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics