Nothing Special   »   [go: up one dir, main page]

Skip to main content

InterSet: Interactive Redescription Set Exploration

  • Conference paper
  • First Online:
Discovery Science (DS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9956))

Included in the following conference series:

Abstract

We propose a novel approach for interactive redescription set exploration and redescription analysis realized through the tool InterSet. The tool is developed for interaction with possibly large redescription sets, produced on large datasets, and it enables better understanding of the underlying data and relations between attribute sets. New insights from redescription sets can be obtained through three different interaction modes based on: (i) similarity of entity occurrence in redescription support sets, (ii) attribute co-occurence in redescriptions and (iii) redescription quality measures. These modes provide additional contextualization, which is a major advantage compared to current state of the art approaches that allow interactive redescription set exploration, enabling users to obtain new knowledge in the form of interesting redescription subsets which can be analysed further on the level of individual redescriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    zel.irb.hr/interset.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. American Association for Artificial Intelligence (1996)

    Google Scholar 

  2. Appice, A., Buono, P.: Analyzing multi-level spatial association rules through a graph-based visualization. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 448–458. Springer, Heidelberg (2005). doi:10.1007/11504894_63

    Chapter  Google Scholar 

  3. Bickel, S., Scheffer, T.: Multi-view clustering. In: Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 19–26. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  4. Blanchard, J., Guillet, F., Briand, H.: A user-driven and quality-oriented visualization for mining association rules. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), Melbourne, Florida, USA, pp. 493–496 (2003)

    Google Scholar 

  5. Casstilo-Rojas, W., Peralta, A., Meneses, C.: Augmented visualization of association rules for data mining. In: Eight Alberto Mendelzon Workshop on Foundations of Data Management, AMW 2014, Cartagena de Indias, Colombia (2014)

    Google Scholar 

  6. Galbrun, E., Miettinen, P.: From black and white to full color: extending redescription mining outside the Boolean world. Stat. Anal. Data Min. 5(4), 284–303 (2012)

    Article  MathSciNet  Google Scholar 

  7. Galbrun, E., Miettinen, P.: Siren: an interactive tool for mining and visualizing geospatial redescriptions. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 1544–1547. ACM, New York (2012)

    Google Scholar 

  8. Gallo, A., Miettinen, P., Mannila, H.: Finding subgroups having several descriptions: algorithms for redescription mining. In: Proceedings of the SIAM International Conference on data mining (SDM), pp. 334–345. SIAM (2008)

    Google Scholar 

  9. Gamberger, D., Mihelčić, M., Lavrač, N.: Multilayer clustering: a discovery experiment on country level trading data. In: Japkowicz, N., Matwin, S. (eds.) DS 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 9356, pp. 87–98. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11812-3_8

    Google Scholar 

  10. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a general survey and comparison. SIGKDD Explor. Newsl. 2, 58–64 (2000)

    Article  Google Scholar 

  11. Kohonen, T., Schroeder, R.M., Huang, T.S.T. (eds.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York Inc., Secaucus (2001)

    MATH  Google Scholar 

  12. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View, 1st edn. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  13. Liu, G., Suchitra, A., Zhang, H., Feng, M., Ng, S.K., Wong, L.: Assocexplorer: an association rule visualization system for exploratory data analysis. In: KDD, pp. 1536–1539. ACM (2012)

    Google Scholar 

  14. Mihelčić, M., Džeroski, S., Lavrač, N., Šmuc, T.: Redescription mining with multi-target predictive clustering trees. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 9607, pp. 125–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39315-5_9

    Chapter  Google Scholar 

  15. Parida, L., Ramakrishnan, N.: Redescription mining: structure theory and algorithms. In: AAAI, pp. 837–844. AAAI Press/The MIT Press (2005)

    Google Scholar 

  16. Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M., Helm, R.F.: Turning cartwheels: an alternating algorithm for mining redescriptions. In: Proceedings of the 10Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 266–275. ACM, New York (2004)

    Google Scholar 

  17. UNCTAD: Unctad database (2014). http://unctadstat.unctad.org/

  18. Wehrens, R., Buydens, L.M.C.: Self and super-organising maps in R: the kohonen package. J. Stat. Softw. 21(5) (2007). http://www.jstatsoft.org/v21/i05

  19. WorldBank: World bank database (2014). http://data.worldbank.org/

  20. Zaki, M.J., Phoophakdee, B.: MIRAGE: A framework for mining, exploring and visualizing minimal association rules. Technical Report 03-4, Computer Science Department, Rensselaer Polytechnic Institute (2003)

    Google Scholar 

  21. Zaki, M.J., Ramakrishnan, N.: Reasoning about sets using redescription mining. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 364–373. ACM, New York (2005)

    Google Scholar 

  22. Zhang, M., He, C.: Survey on association rules mining algorithms. In: Luo, Q. (ed.) Advancing Computing, Communication, Control and Management. LNEE, vol. 56, pp. 111–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Zinchenko, T.: Redescription mining over non-binary data sets using decision trees. Master’s thesis, Universität des Saarlandes Saarbrücken, Germany (2014)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the European Commissions support through the MAESTRA project (Gr. no. 612944), the MULTIPLEX project (Gr.no. 317532) and support of the Croatian Science Foundation (Pr. no. 9623: Machine Learning Algorithms for Insightful Analysis of Complex Data Structures).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Mihelčić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mihelčić, M., Šmuc, T. (2016). InterSet: Interactive Redescription Set Exploration. In: Calders, T., Ceci, M., Malerba, D. (eds) Discovery Science. DS 2016. Lecture Notes in Computer Science(), vol 9956. Springer, Cham. https://doi.org/10.1007/978-3-319-46307-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46307-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46306-3

  • Online ISBN: 978-3-319-46307-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics