Abstract
We propose a novel approach for interactive redescription set exploration and redescription analysis realized through the tool InterSet. The tool is developed for interaction with possibly large redescription sets, produced on large datasets, and it enables better understanding of the underlying data and relations between attribute sets. New insights from redescription sets can be obtained through three different interaction modes based on: (i) similarity of entity occurrence in redescription support sets, (ii) attribute co-occurence in redescriptions and (iii) redescription quality measures. These modes provide additional contextualization, which is a major advantage compared to current state of the art approaches that allow interactive redescription set exploration, enabling users to obtain new knowledge in the form of interesting redescription subsets which can be analysed further on the level of individual redescriptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. American Association for Artificial Intelligence (1996)
Appice, A., Buono, P.: Analyzing multi-level spatial association rules through a graph-based visualization. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 448–458. Springer, Heidelberg (2005). doi:10.1007/11504894_63
Bickel, S., Scheffer, T.: Multi-view clustering. In: Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 19–26. IEEE Computer Society, Washington, DC (2004)
Blanchard, J., Guillet, F., Briand, H.: A user-driven and quality-oriented visualization for mining association rules. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), Melbourne, Florida, USA, pp. 493–496 (2003)
Casstilo-Rojas, W., Peralta, A., Meneses, C.: Augmented visualization of association rules for data mining. In: Eight Alberto Mendelzon Workshop on Foundations of Data Management, AMW 2014, Cartagena de Indias, Colombia (2014)
Galbrun, E., Miettinen, P.: From black and white to full color: extending redescription mining outside the Boolean world. Stat. Anal. Data Min. 5(4), 284–303 (2012)
Galbrun, E., Miettinen, P.: Siren: an interactive tool for mining and visualizing geospatial redescriptions. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 1544–1547. ACM, New York (2012)
Gallo, A., Miettinen, P., Mannila, H.: Finding subgroups having several descriptions: algorithms for redescription mining. In: Proceedings of the SIAM International Conference on data mining (SDM), pp. 334–345. SIAM (2008)
Gamberger, D., Mihelčić, M., Lavrač, N.: Multilayer clustering: a discovery experiment on country level trading data. In: Japkowicz, N., Matwin, S. (eds.) DS 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 9356, pp. 87–98. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11812-3_8
Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a general survey and comparison. SIGKDD Explor. Newsl. 2, 58–64 (2000)
Kohonen, T., Schroeder, R.M., Huang, T.S.T. (eds.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York Inc., Secaucus (2001)
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View, 1st edn. Springer Publishing Company, Incorporated (2008)
Liu, G., Suchitra, A., Zhang, H., Feng, M., Ng, S.K., Wong, L.: Assocexplorer: an association rule visualization system for exploratory data analysis. In: KDD, pp. 1536–1539. ACM (2012)
Mihelčić, M., Džeroski, S., Lavrač, N., Šmuc, T.: Redescription mining with multi-target predictive clustering trees. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 9607, pp. 125–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39315-5_9
Parida, L., Ramakrishnan, N.: Redescription mining: structure theory and algorithms. In: AAAI, pp. 837–844. AAAI Press/The MIT Press (2005)
Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M., Helm, R.F.: Turning cartwheels: an alternating algorithm for mining redescriptions. In: Proceedings of the 10Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 266–275. ACM, New York (2004)
UNCTAD: Unctad database (2014). http://unctadstat.unctad.org/
Wehrens, R., Buydens, L.M.C.: Self and super-organising maps in R: the kohonen package. J. Stat. Softw. 21(5) (2007). http://www.jstatsoft.org/v21/i05
WorldBank: World bank database (2014). http://data.worldbank.org/
Zaki, M.J., Phoophakdee, B.: MIRAGE: A framework for mining, exploring and visualizing minimal association rules. Technical Report 03-4, Computer Science Department, Rensselaer Polytechnic Institute (2003)
Zaki, M.J., Ramakrishnan, N.: Reasoning about sets using redescription mining. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 364–373. ACM, New York (2005)
Zhang, M., He, C.: Survey on association rules mining algorithms. In: Luo, Q. (ed.) Advancing Computing, Communication, Control and Management. LNEE, vol. 56, pp. 111–118. Springer, Heidelberg (2010)
Zinchenko, T.: Redescription mining over non-binary data sets using decision trees. Master’s thesis, Universität des Saarlandes Saarbrücken, Germany (2014)
Acknowledgement
The authors acknowledge the European Commissions support through the MAESTRA project (Gr. no. 612944), the MULTIPLEX project (Gr.no. 317532) and support of the Croatian Science Foundation (Pr. no. 9623: Machine Learning Algorithms for Insightful Analysis of Complex Data Structures).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Mihelčić, M., Šmuc, T. (2016). InterSet: Interactive Redescription Set Exploration. In: Calders, T., Ceci, M., Malerba, D. (eds) Discovery Science. DS 2016. Lecture Notes in Computer Science(), vol 9956. Springer, Cham. https://doi.org/10.1007/978-3-319-46307-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-46307-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46306-3
Online ISBN: 978-3-319-46307-0
eBook Packages: Computer ScienceComputer Science (R0)