Nothing Special   »   [go: up one dir, main page]

Skip to main content

Novel Image Correction Method Based on Swarm Intelligence Approach

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 639))

Included in the following conference series:

  • 1289 Accesses

Abstract

In the article an approach toward novel method for image features correction is proposed. For the input image developed swarm intelligence technique is applied to improve brightness, contrast, sharpen presentation and improve gamma correction. The following sections present proposed model of the correction techniques with applied swarm intelligence approach. Experimental results on a set of test images are presented with a discussion of achieved improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aydin, D.: An efficient ant-based edge detector. T. Comput. Collective Intell. 1, 39–55 (2010)

    Google Scholar 

  2. Benatcha, K., Koudil, M., Benkhelat, N., Boukir, Y.: ISA an algorithm for image segmentation using ants. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 2503–2507 (2008)

    Google Scholar 

  3. Bhandari, A., Singh, V., Kumar, A., Singh, G.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)

    Article  Google Scholar 

  4. Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Thermal Sci. 19, 35–42 (2015)

    Article  Google Scholar 

  5. Brociek, R., Słota, D.: Application of intelligent algorithm to solve the fractional heat conduction inverse problem. Commun. Comput. Inf. Sci. 538, 356–365 (2015)

    Article  Google Scholar 

  6. Budnikas, G.: A model for an aggression discovery through person online behavior. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 305–315. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24369-6_25

    Chapter  Google Scholar 

  7. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  8. Damaševičius, R.: Structural analysis of regulatory DNA sequences using grammar inference and support vector machine. Neurocomputing 73(4–6), 633–638 (2010)

    Google Scholar 

  9. Ferdowsi, S., Voloshynovskiy, S., Kostadinov, D., Korytkowski, M., Scherer, R.: Secure representation of images using multi-layer compression. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9119, pp. 696–705. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of immune recruitment mechanism and clonal selection algorithm applied for solving the inverse problems of pure metal solidification. Int. Commun. Heat Mass Transf. 47, 7–14 (2013)

    Article  Google Scholar 

  11. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  12. Keshtkar, F., Gueaieb, W.: Segmentation of dental radiographs using a swarm intelligence approach. In: Proceedings of Canadian Conference Electrical and Computer Engineering, pp. 328–331 (2006)

    Google Scholar 

  13. Lakehal, E.: A swarm intelligence based approach for image feature extraction. In: Proceedings of International Conference on Multimedia Computing and Systems, pp. 31–35 (2009)

    Google Scholar 

  14. Napoli, C., Pappalardo, G., Tramontana, E.: A mathematical model for file fragment diffusion and a neural predictor to manage priority queues over BitTorrent. Appl. Math. Comput. Sci. 26(1), 147–160 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Napoli, C., Pappalardo, G., Tramontana, E., Zappalà, G.: A cloud-distributed GPU architecture for pattern identification in segmented detectors big-data surveys. Comput. J. 59(3), 338–352 (2016)

    Article  Google Scholar 

  16. Mishra, A., Agarwal, C., Sharma, A., Bedi, P.: Optimized gray-scale image water- marking using DWT SVD and firefly algorithm. Expert Syst. Appl. 41(17), 7858–7867 (2014)

    Article  Google Scholar 

  17. Okulewicz, M., Mandziuk, J.: Two-phase multi-swarm PSO and the dynamic vehicle routing problem. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 86–93 (2014)

    Google Scholar 

  18. Ouadfel, S., Batouche, M.: MRF-based image segmentation using ant colony system. Electron. Lett. Comput. Vis. Image Anal. 2(2), 12–24 (2013)

    Google Scholar 

  19. Pranevicius, H., Kraujalis, T., Budnikas, G., Pilkauskas, V.: Fuzzy rule base generation using discretization of membership functions and neural network. Commun. Comput. Inf. Sci. 465, 160–171 (2014)

    Article  Google Scholar 

  20. Stateczny, A., Wlodarczyk-Sielicka, M.: Self-organizing artificial neural networks into hydrographic big data reduction process. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 335–342. Springer, Heidelberg (2014)

    Google Scholar 

  21. Swiechowski, M., Mandziuk, J.: Self-adaptation of playing strategies in general game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 367–381 (2014)

    Article  Google Scholar 

  22. Tian, J., Yu, W., Chen, L., Ma, L.: Image edge detection using variation-adaptive ant colony optimization. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence V. LNCS, vol. 6910, pp. 27–40. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Waledzik, K., Mandziuk, J.: An automatically generated evaluation function in general game playing. IEEE Trans. Comput. Intell. AI Games 6(3), 258–270 (2014)

    Article  Google Scholar 

  24. Wang, Y., Wan, Q.: Detecting moving objects by ant colony system in a MAP-MRF framework. In: Proceedings of International Conference on E-Product E-Service and E-Entertainment, pp. 1–4 (2010)

    Google Scholar 

  25. Wlodarczyk-Sielicka, M., Stateczny, A.: Selection of SOM parameters for the needs of clusterisation of data obtained by interferometric methods. In: Proceedings of 16th International Radar Symposium, Dresden, pp. 1129–1134 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Woźniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Woźniak, M. (2016). Novel Image Correction Method Based on Swarm Intelligence Approach. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics