Abstract
In the article an approach toward novel method for image features correction is proposed. For the input image developed swarm intelligence technique is applied to improve brightness, contrast, sharpen presentation and improve gamma correction. The following sections present proposed model of the correction techniques with applied swarm intelligence approach. Experimental results on a set of test images are presented with a discussion of achieved improvements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aydin, D.: An efficient ant-based edge detector. T. Comput. Collective Intell. 1, 39–55 (2010)
Benatcha, K., Koudil, M., Benkhelat, N., Boukir, Y.: ISA an algorithm for image segmentation using ants. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 2503–2507 (2008)
Bhandari, A., Singh, V., Kumar, A., Singh, G.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)
Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Thermal Sci. 19, 35–42 (2015)
Brociek, R., Słota, D.: Application of intelligent algorithm to solve the fractional heat conduction inverse problem. Commun. Comput. Inf. Sci. 538, 356–365 (2015)
Budnikas, G.: A model for an aggression discovery through person online behavior. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 305–315. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24369-6_25
Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)
Damaševičius, R.: Structural analysis of regulatory DNA sequences using grammar inference and support vector machine. Neurocomputing 73(4–6), 633–638 (2010)
Ferdowsi, S., Voloshynovskiy, S., Kostadinov, D., Korytkowski, M., Scherer, R.: Secure representation of images using multi-layer compression. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.). LNCS, vol. 9119, pp. 696–705. Springer, Heidelberg (2015)
Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of immune recruitment mechanism and clonal selection algorithm applied for solving the inverse problems of pure metal solidification. Int. Commun. Heat Mass Transf. 47, 7–14 (2013)
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Keshtkar, F., Gueaieb, W.: Segmentation of dental radiographs using a swarm intelligence approach. In: Proceedings of Canadian Conference Electrical and Computer Engineering, pp. 328–331 (2006)
Lakehal, E.: A swarm intelligence based approach for image feature extraction. In: Proceedings of International Conference on Multimedia Computing and Systems, pp. 31–35 (2009)
Napoli, C., Pappalardo, G., Tramontana, E.: A mathematical model for file fragment diffusion and a neural predictor to manage priority queues over BitTorrent. Appl. Math. Comput. Sci. 26(1), 147–160 (2016)
Napoli, C., Pappalardo, G., Tramontana, E., Zappalà, G.: A cloud-distributed GPU architecture for pattern identification in segmented detectors big-data surveys. Comput. J. 59(3), 338–352 (2016)
Mishra, A., Agarwal, C., Sharma, A., Bedi, P.: Optimized gray-scale image water- marking using DWT SVD and firefly algorithm. Expert Syst. Appl. 41(17), 7858–7867 (2014)
Okulewicz, M., Mandziuk, J.: Two-phase multi-swarm PSO and the dynamic vehicle routing problem. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 86–93 (2014)
Ouadfel, S., Batouche, M.: MRF-based image segmentation using ant colony system. Electron. Lett. Comput. Vis. Image Anal. 2(2), 12–24 (2013)
Pranevicius, H., Kraujalis, T., Budnikas, G., Pilkauskas, V.: Fuzzy rule base generation using discretization of membership functions and neural network. Commun. Comput. Inf. Sci. 465, 160–171 (2014)
Stateczny, A., Wlodarczyk-Sielicka, M.: Self-organizing artificial neural networks into hydrographic big data reduction process. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 335–342. Springer, Heidelberg (2014)
Swiechowski, M., Mandziuk, J.: Self-adaptation of playing strategies in general game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 367–381 (2014)
Tian, J., Yu, W., Chen, L., Ma, L.: Image edge detection using variation-adaptive ant colony optimization. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence V. LNCS, vol. 6910, pp. 27–40. Springer, Heidelberg (2011)
Waledzik, K., Mandziuk, J.: An automatically generated evaluation function in general game playing. IEEE Trans. Comput. Intell. AI Games 6(3), 258–270 (2014)
Wang, Y., Wan, Q.: Detecting moving objects by ant colony system in a MAP-MRF framework. In: Proceedings of International Conference on E-Product E-Service and E-Entertainment, pp. 1–4 (2010)
Wlodarczyk-Sielicka, M., Stateczny, A.: Selection of SOM parameters for the needs of clusterisation of data obtained by interferometric methods. In: Proceedings of 16th International Radar Symposium, Dresden, pp. 1129–1134 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Woźniak, M. (2016). Novel Image Correction Method Based on Swarm Intelligence Approach. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-46254-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46253-0
Online ISBN: 978-3-319-46254-7
eBook Packages: Computer ScienceComputer Science (R0)