Nothing Special   »   [go: up one dir, main page]

Skip to main content

Architecture and Conceptual Bases of Cloud IT Infrastructure Management

  • Chapter
  • First Online:
Advances in Intelligent Systems and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 512))

Abstract

A widespread use of the cloud computing paradigm has increased the necessity and significance of improving the management efficiency of cloud infrastructures. Cloud infrastructures are characterized by a large amount of resources, different virtualization technology usage, increasing complexity, the substantial dynamics of technological changes, increasing volume of processed information. Under these conditions, special attention is paid to solving cloud resource management problems. In this paper, the authors present an architecture of Software Defined Cloud Infrastructure management system that leverages Software Defined approach in all subsystems: network, storage, and computation. Due to the intensive changes of virtual machine (VM) workloads and different conditions of resource utilization the VM placement and migration problems should be solved and optimized continuously in an online manner. To address such problems the authors present an algorithm for continuous new VM allocation and VM migration. Furthermore, the authors propose novel heuristics for VM placement and consolidation based on a physical machine (PM) workload prediction and evaluate a particular policy of the VM allocation in a data center using the adaptive genetic algorithm. The proposed Adaptive Software Defined approach to the cloud infrastructure management is implemented in the policy selector, and takes into account the existing API of SDN, Software Defined Storage, and Software Defined Computing controllers. This allows to select different algorithms or policies for resources and virtual machines management in order to adapt to the impact of disturbing influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buyya, R., Calheiros, R.N., Son, J., Dastjerdi, A.V., Yoon, Y.: Software-defined cloud computing: architectural elements and open challenges. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1–12 (2014)

    Google Scholar 

  2. Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M., Rindos, A.: SDDC: a software defined datacenter experimental framework. In: Proceedings of the FICLOUD 2015, 3rd international conference on future internet of things and cloud, pp. 189–194 (2015)

    Google Scholar 

  3. Jararweh, Y., Al-Ayyoub, M., Benkhelifa, E., Vouk, M., Rindos, A., et al.: Software defined cloud: survey, system and evaluation. Future Gener. Comput. Syst. 58, 56–74 (2016)

    Article  Google Scholar 

  4. Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.: The autonomic computing paradigm. Cluster Comput. 9(1), 5–17 (2006)

    Article  Google Scholar 

  5. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.: Above the clouds: a Berkeley view of cloud computing, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Rep. UCB/EECS, vol. 28, p. 13 (2009)

    Google Scholar 

  6. Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P.P., Kolodziej, J., Balaji, P., Zeadally, S., Malluhi, Q.M., Tziritas, N., Vishnu, A., et al.: A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing, pp. 1–24 (2014)

    Google Scholar 

  7. Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., et al.: Resource scheduling for infrastructure as a service (IaaS) in cloud computing: challenges and opportunities. J. Netw. Comput. Appl. 68, 173–200 (2016)

    Article  Google Scholar 

  8. Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 68, 1–48 (2016)

    Article  Google Scholar 

  9. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  10. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, vol. 2, pp. 273–286 (2005)

    Google Scholar 

  11. Wood, T., Shenoy, P.J., Venkataramani, A., Yousif, M.S.: Black-box and gray-box strategies for virtual machine migration. NSDI 7, 17 (2007)

    Google Scholar 

  12. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Management, pp. 119–128 (2007)

    Google Scholar 

  13. Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C., Gmach, D., Gardner, R., et al.: 1000 islands: integrated capacity and workload management for the next generation data center. In: Proceedings of the 5th IEEE International Conference on Autonomic Computing. ICAC’08. pp. 172–181 (2008)

    Google Scholar 

  14. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, (2011)

    Google Scholar 

  15. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. 24(13), 1397–1420 (2012)

    Article  Google Scholar 

  16. Horri, A., Mozafari, M.S., Dastghaibyfard, G.: Novel resource allocation algorithms to performance and energy efficiency in cloud computing. J. Supercomput. 69(3), 1445–1461 (2014)

    Article  Google Scholar 

  17. Venticinque, S., Tasquier, L, Di Martino, B.: Agents based cloud computing interface for resource provisioning and management: In: IEEE Proceedings of the Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pp. 249–256 (2012)

    Google Scholar 

  18. Al-Ayyoub, M., Jararweh, Y., Daraghmeh, M., Althebyan, Q.: Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure. Cluster Comput. 18(2), 919–932 (2015)

    Article  Google Scholar 

  19. Rolik, A.I.: Decomposition-compensation method of service level management of corporate IT infrastructures. Visnyk NTUU “KPI. Inform. Oper. Comput. Sci. 58, 78–88 (2013)

    Google Scholar 

  20. Rolik, A.I.: Service level management of corporate IT infrastructure based on the coordinator. Visnyk NTUU “KPI. Inform. Oper. Comput. Sci. 59, 98–105 (2013)

    Google Scholar 

  21. Telenik, S.F., Rolik, A.I., Savchenko, P.S.: Adaptive genetic algorithm for data center resource allocation. Visnyk NTUU KPI. Inform. Oper. Comput. Sci. 54, 164–174 (2011)

    Google Scholar 

  22. Rolik, A.I.: The concept of corporate IT infrastructure management. Visnyk NTUU KPI. Inform. Oper. Comput. Sci. 56, 31–55 (2012)

    Google Scholar 

  23. Mell, P., Grance, T.: The NIST definition of cloud computing (draft). NIST Spec. Publ. 800(145), 7 (2011)

    Google Scholar 

  24. Apache.org. HDFS Architecture. http://hadoop.apache.org/core/docs/current/hdfs_design.html

  25. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y., Srivastav, S., Wu, J., Simitci, H., et al.: Windows Azure Storage: a highly available cloud storage service with strong consistency. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM, pp. 143–157 (2011)

    Google Scholar 

  26. Ghemawat, S., Gobioff, H., & Leung, S.-T.: The google file system. SOSP’03: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43. ACM, Bolton Landing, NY (2003)

    Google Scholar 

  27. Pultz, J. E. (2011). DCIM, New Tools to Monitor, Manage and Control Power. Gartner Data Center Conference

    Google Scholar 

  28. Cappuccio, D.J.: DCIM: Going Beyond IT” Gartner ID G00174769, May29, 2010

    Google Scholar 

  29. Pultz, J., De Silva, F., Adams, A.: Market trends: addressable DCIM Market. G00239150, November 27, 2012

    Google Scholar 

  30. Barroso, L.A., Clidaras, J., Hӧlzle, U.: The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synthes. Lect. Comput. Arch. 8(3), 1–154 (2013)

    Article  Google Scholar 

  31. McCauley, M.: POX (2012). Available: http://www.noxrepo.org/

  32. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.: NOX: towards an operating system for networks. Comp. Comm. Rev. (2008)

    Google Scholar 

  33. Krishnaswamy, U., Berde, P., Hart, J., Kobayashi, M., Radoslavov, P., Lindberg, T., Sverdlov, R., Zhang, S., Snow, W., Parulkar, G.: ONOS: an open source distributed SDN OS. (2013). Available: http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system

  34. OpenDaylight, “OpenDaylight: a linux foundation collaborative project (2013). Available: http://www.opendaylight.org

  35. Kreutz, D., Ramos, F.M., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. In Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015

    Google Scholar 

  36. Sampaio, A.M., Barbosa, J.G., Prodan, R.: PIASA: a power and interference aware resource management strategy for heterogeneous workloads in cloud data centers. Simul. Model. Pract. Theory 57, 142–160 (2015)

    Article  Google Scholar 

  37. XenSource, Inc. (2008). TheXen™ virtual machine monitor. http://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xen/

  38. VMware, Inc. (2016). vSphere Hypervisor. http://www.vmware.com/products/vsphere-hypervisor/

  39. Microsoft Corporation. (2016) Hyper-V overview. https://technet.microsoft.com/library/hh831531.aspx

  40. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  41. Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)

    Article  Google Scholar 

  42. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. NSDI 8, 337–350 (2008)

    Google Scholar 

  43. Telenik S.F.: Genetic algorithms for solving problems of resource management and load data processing centers/S. F. Telenik, A. I. Rolik, M. N. Bukasov, S. A. Androsov// Automation. Automation. Electrical complexes and systems, no. 1, pp. 106–120 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Telenyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Telenyk, S., Zharikov, E., Rolik, O. (2017). Architecture and Conceptual Bases of Cloud IT Infrastructure Management. In: Shakhovska, N. (eds) Advances in Intelligent Systems and Computing. Advances in Intelligent Systems and Computing, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-45991-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45991-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45990-5

  • Online ISBN: 978-3-319-45991-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics