Abstract
A widespread use of the cloud computing paradigm has increased the necessity and significance of improving the management efficiency of cloud infrastructures. Cloud infrastructures are characterized by a large amount of resources, different virtualization technology usage, increasing complexity, the substantial dynamics of technological changes, increasing volume of processed information. Under these conditions, special attention is paid to solving cloud resource management problems. In this paper, the authors present an architecture of Software Defined Cloud Infrastructure management system that leverages Software Defined approach in all subsystems: network, storage, and computation. Due to the intensive changes of virtual machine (VM) workloads and different conditions of resource utilization the VM placement and migration problems should be solved and optimized continuously in an online manner. To address such problems the authors present an algorithm for continuous new VM allocation and VM migration. Furthermore, the authors propose novel heuristics for VM placement and consolidation based on a physical machine (PM) workload prediction and evaluate a particular policy of the VM allocation in a data center using the adaptive genetic algorithm. The proposed Adaptive Software Defined approach to the cloud infrastructure management is implemented in the policy selector, and takes into account the existing API of SDN, Software Defined Storage, and Software Defined Computing controllers. This allows to select different algorithms or policies for resources and virtual machines management in order to adapt to the impact of disturbing influences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buyya, R., Calheiros, R.N., Son, J., Dastjerdi, A.V., Yoon, Y.: Software-defined cloud computing: architectural elements and open challenges. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1–12 (2014)
Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M., Rindos, A.: SDDC: a software defined datacenter experimental framework. In: Proceedings of the FICLOUD 2015, 3rd international conference on future internet of things and cloud, pp. 189–194 (2015)
Jararweh, Y., Al-Ayyoub, M., Benkhelifa, E., Vouk, M., Rindos, A., et al.: Software defined cloud: survey, system and evaluation. Future Gener. Comput. Syst. 58, 56–74 (2016)
Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.: The autonomic computing paradigm. Cluster Comput. 9(1), 5–17 (2006)
Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.: Above the clouds: a Berkeley view of cloud computing, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Rep. UCB/EECS, vol. 28, p. 13 (2009)
Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P.P., Kolodziej, J., Balaji, P., Zeadally, S., Malluhi, Q.M., Tziritas, N., Vishnu, A., et al.: A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing, pp. 1–24 (2014)
Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., et al.: Resource scheduling for infrastructure as a service (IaaS) in cloud computing: challenges and opportunities. J. Netw. Comput. Appl. 68, 173–200 (2016)
Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 68, 1–48 (2016)
Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)
Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, vol. 2, pp. 273–286 (2005)
Wood, T., Shenoy, P.J., Venkataramani, A., Yousif, M.S.: Black-box and gray-box strategies for virtual machine migration. NSDI 7, 17 (2007)
Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Management, pp. 119–128 (2007)
Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C., Gmach, D., Gardner, R., et al.: 1000 islands: integrated capacity and workload management for the next generation data center. In: Proceedings of the 5th IEEE International Conference on Autonomic Computing. ICAC’08. pp. 172–181 (2008)
Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, (2011)
Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. 24(13), 1397–1420 (2012)
Horri, A., Mozafari, M.S., Dastghaibyfard, G.: Novel resource allocation algorithms to performance and energy efficiency in cloud computing. J. Supercomput. 69(3), 1445–1461 (2014)
Venticinque, S., Tasquier, L, Di Martino, B.: Agents based cloud computing interface for resource provisioning and management: In: IEEE Proceedings of the Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pp. 249–256 (2012)
Al-Ayyoub, M., Jararweh, Y., Daraghmeh, M., Althebyan, Q.: Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure. Cluster Comput. 18(2), 919–932 (2015)
Rolik, A.I.: Decomposition-compensation method of service level management of corporate IT infrastructures. Visnyk NTUU “KPI. Inform. Oper. Comput. Sci. 58, 78–88 (2013)
Rolik, A.I.: Service level management of corporate IT infrastructure based on the coordinator. Visnyk NTUU “KPI. Inform. Oper. Comput. Sci. 59, 98–105 (2013)
Telenik, S.F., Rolik, A.I., Savchenko, P.S.: Adaptive genetic algorithm for data center resource allocation. Visnyk NTUU KPI. Inform. Oper. Comput. Sci. 54, 164–174 (2011)
Rolik, A.I.: The concept of corporate IT infrastructure management. Visnyk NTUU KPI. Inform. Oper. Comput. Sci. 56, 31–55 (2012)
Mell, P., Grance, T.: The NIST definition of cloud computing (draft). NIST Spec. Publ. 800(145), 7 (2011)
Apache.org. HDFS Architecture. http://hadoop.apache.org/core/docs/current/hdfs_design.html
Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y., Srivastav, S., Wu, J., Simitci, H., et al.: Windows Azure Storage: a highly available cloud storage service with strong consistency. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM, pp. 143–157 (2011)
Ghemawat, S., Gobioff, H., & Leung, S.-T.: The google file system. SOSP’03: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43. ACM, Bolton Landing, NY (2003)
Pultz, J. E. (2011). DCIM, New Tools to Monitor, Manage and Control Power. Gartner Data Center Conference
Cappuccio, D.J.: DCIM: Going Beyond IT” Gartner ID G00174769, May29, 2010
Pultz, J., De Silva, F., Adams, A.: Market trends: addressable DCIM Market. G00239150, November 27, 2012
Barroso, L.A., Clidaras, J., Hӧlzle, U.: The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synthes. Lect. Comput. Arch. 8(3), 1–154 (2013)
McCauley, M.: POX (2012). Available: http://www.noxrepo.org/
Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.: NOX: towards an operating system for networks. Comp. Comm. Rev. (2008)
Krishnaswamy, U., Berde, P., Hart, J., Kobayashi, M., Radoslavov, P., Lindberg, T., Sverdlov, R., Zhang, S., Snow, W., Parulkar, G.: ONOS: an open source distributed SDN OS. (2013). Available: http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system
OpenDaylight, “OpenDaylight: a linux foundation collaborative project (2013). Available: http://www.opendaylight.org
Kreutz, D., Ramos, F.M., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. In Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015
Sampaio, A.M., Barbosa, J.G., Prodan, R.: PIASA: a power and interference aware resource management strategy for heterogeneous workloads in cloud data centers. Simul. Model. Pract. Theory 57, 142–160 (2015)
XenSource, Inc. (2008). TheXen™ virtual machine monitor. http://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xen/
VMware, Inc. (2016). vSphere Hypervisor. http://www.vmware.com/products/vsphere-hypervisor/
Microsoft Corporation. (2016) Hyper-V overview. https://technet.microsoft.com/library/hh831531.aspx
Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, Hoboken (2015)
Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)
Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. NSDI 8, 337–350 (2008)
Telenik S.F.: Genetic algorithms for solving problems of resource management and load data processing centers/S. F. Telenik, A. I. Rolik, M. N. Bukasov, S. A. Androsov// Automation. Automation. Electrical complexes and systems, no. 1, pp. 106–120 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Telenyk, S., Zharikov, E., Rolik, O. (2017). Architecture and Conceptual Bases of Cloud IT Infrastructure Management. In: Shakhovska, N. (eds) Advances in Intelligent Systems and Computing. Advances in Intelligent Systems and Computing, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-45991-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-45991-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45990-5
Online ISBN: 978-3-319-45991-2
eBook Packages: EngineeringEngineering (R0)