Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analysis of Clustering Algorithms

  • Chapter
  • First Online:
Advances in Intelligent Systems and Computing

Abstract

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manly, B.F.J.: Multivariate Statistical Methods: A Primer, 3rd edn. Chapman and Hall, London (2005)

    MATH  Google Scholar 

  2. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Arnold, London (2001)

    MATH  Google Scholar 

  3. Rencher, A.C.: Methods of Multivariate Analysis, 2nd edn. Wiley, Hoboken (2002)

    Book  MATH  Google Scholar 

  4. Chavent, M.: An hausdorff distance between hyper-rectangles for clustering interval data. In: Banks, D., House, L., McMorris, F., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications. Springer, Berlin (2004)

    Google Scholar 

  5. Veres, O., Shakhovska, N.: Elements of the formal model big date. In: Perspective Technologies and Methods in MEMS Design, MEMSTECH (2015)

    Google Scholar 

  6. De Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of interval data based on city-block distances. Pattern Recognit. Lett. 25(3), 353 (2004)

    Article  Google Scholar 

  7. Gordon, A.D.: An iteractive relocation algorithm for classifying symbolic data. In: Gaul, W.E.A. (ed.) Data Analysis: Scientific Modeling and Practical Application. Springer, Berlin (2000)

    Google Scholar 

  8. Dokshitzer, Y.L., et al.: Better jet clustering algorithms. J. High Energy Phys. 1997, 1 (1997)

    Article  Google Scholar 

  9. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007)

    Article  MATH  Google Scholar 

  10. Da Jiao, Z.L.Z.W., Cheng, L.: Kernel clustering algorithm. Chin. J. Comput. 6, 004 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Zheliznyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zheliznyak, I., Rybchak, Z., Zavuschak, I. (2017). Analysis of Clustering Algorithms. In: Shakhovska, N. (eds) Advances in Intelligent Systems and Computing. Advances in Intelligent Systems and Computing, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-45991-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45991-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45990-5

  • Online ISBN: 978-3-319-45991-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics