Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Particle Swarm Optimization Algorithm with Repair Procedure

  • Chapter
  • First Online:
Advances in Intelligent Systems and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 512))

Abstract

In this paper a new particle swarm optimization algorithm called RPSO for solving high dimensional optimization problems is proposed and analyzed both in terms of their efficiency, the ability to avoid local optima and resistance to the problem of premature convergence. In RPSO, a repair procedure was introduced the aim of which was to determine new, better velocities for some particles, when their current velocities are inefficient. New velocities are the functions of previous and current velocities. The new algorithm was tested with a set of benchmark functions and the results were compared with those obtained through the standard PSO (SPSO) and IPSO. Simulation results show that new RPSO is faster and more effective than the standard PSO and IPSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Improved Particle Swarm Optimization [16].

References

  1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  3. Dolatshahi-Zand, A., Khalili-Damghani, K.: Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization. Reliab. Eng. Syst. Saf. 133, 11–21 (2015)

    Article  Google Scholar 

  4. Mazhoud, I., Hadj-Hamou, K., Bigeon, J., Joyeux, P.: Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism. Eng. Appl. Artif. Intell. 26, 1263–1273 (2013)

    Article  Google Scholar 

  5. Yildiz, A.R., Solanki, K.N.: Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int. J. Adv. Manuf. Technol. 59, 367–376 (2012)

    Article  Google Scholar 

  6. Guedria, N.B.: Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 40, 455–467 (2016)

    Article  Google Scholar 

  7. Yadav, R.D.S., Gupta, H.P.: Optimization studies of fuel loading pattern for a typical pressurized water reactor (PWR) using particle swarm method. Ann. Nucl. Energy 38, 2086–2095 (2011)

    Article  Google Scholar 

  8. Hajforoosh, S., Masoum, M.A.S., Islam, S.M.: Real-time charging coordination of plug-in electric vehicles based on hybrid fuzzy discrete particle swarm optimization. Electr. Power Syst. Res. 128, 19–29 (2015)

    Article  Google Scholar 

  9. Eberhart, R.C., Shi, Y.: Evolving artificial neural networks. In: Proceedings of the International Conference Neural Networks and Brain, Beijing, P.R.China, pp. 5–13 (1998)

    Google Scholar 

  10. Zheng, Y., Ma, L., Zhang, L., Qian, J.: Empirical study of particle swarm optimizer with an increasing inertia weight. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 221–226 (2003)

    Google Scholar 

  11. Han, Y., Tang, J., Kaku, I., Mu, L.: Solving uncapacitated multilevel lot-sizing problems using a particle swarm optimization with flexible inertial weight. Comput. Math Appl. 57, 1748–1755 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, X., Yuan, J., Yuan, J., Mao, H.: A modified particle swarm optimizer with dynamic adaptation. Appl. Math. Comput. 189, 1205–1213 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Dong, Y., Tang, J., Xu, B., Wang, D.: An application of swarm optimization to nonlinear programming. Comput. Math Appl. 49, 1655–1668 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borowska, B.: PAPSO algorithm for optimization of the coil arrangement. Przeglad Elektrotechniczny (Electr Rev) 89, 272–274 (2013)

    Google Scholar 

  15. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  16. Jiang, Y., Hu, T., Huang, C., Wu, X.: An improved particle swarm optimization algorithm. Appl. Math. Comput. 193, 231–239 (2007)

    MATH  Google Scholar 

  17. Robinson, J., Sinton, S., Rahmat-Samii, Y.: Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In: Antennas and Propagation Society International Symposium, vol. 1, pp. 314–317 (2002)

    Google Scholar 

  18. Shi, X., Lu, Y., Zhou, C., Lee, H., Lin, W., Liang, Y.: Hybrid evolutionary algorithms based on PSO and GA. In: Proceedings of IEEE Congress on Evolutionary Computation 2003, Canbella, Australia, pp. 2393–2399 (2003)

    Google Scholar 

  19. Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, L.M.: An improved GA and novel PSO-GA-based hybrid algorithm. Inf. Process. Lett. 93, 255–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, L., Li, L., Liu, L.: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation. Appl. Math. Comput. 179, 135–146 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Wang, X.H., Li, J.J.: Hybrid particle swarm optimization with simulated annealing. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, pp. 2402–2405 (2004)

    Google Scholar 

  22. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 101–106 (2001)

    Google Scholar 

  23. Tian, D., Li, N.: Fuzzy particle swarm optimization algorithm. In: International Joint Conference on Artificial Intelligence, pp. 263–267 (2009)

    Google Scholar 

  24. Liu, H., Abraham, A.: Fuzzy adaptive turbulent particle swarm optimization. In: The Fifth International Conference on Hybrid Intelligent Systems, Brazil, pp. 1–6 (2005)

    Google Scholar 

  25. Shi, Y.H., Eberhart, R.C.: Experimental study of particle swarm optimization. In: The Fourth World Multiconference on Systemics, Cybemetics and Informatics, USA, pp. 104–110 (2000)

    Google Scholar 

  26. Zahiri, S.H., Seyedin, S.A.: Swarm intelligence based classifiers. J. Franklin Inst. 344, 362–376 (2007)

    Article  MATH  Google Scholar 

  27. Trelea, I.C.: The particle swarm optimization algorithm convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176, 937–971 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Borowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Borowska, B. (2017). An Improved Particle Swarm Optimization Algorithm with Repair Procedure. In: Shakhovska, N. (eds) Advances in Intelligent Systems and Computing. Advances in Intelligent Systems and Computing, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-45991-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45991-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45990-5

  • Online ISBN: 978-3-319-45991-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics