Nothing Special   »   [go: up one dir, main page]

Skip to main content

Depth Map Based Facade Abstraction from Noisy Multi-View Stereo Point Clouds

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

Multi-View Stereo offers an affordable and flexible method for the acquisition of 3D point clouds. However, these point clouds are prone to errors and missing regions. In addition, an abstraction in the form of a simple mesh capturing the essence of the surface is usually preferred over the raw point cloud measurement. We present a fully automatic pipeline that computes such a mesh from the noisy point cloud of a building facade. We leverage prior work on casting the computation of a 2.5D depth map as a labeling problem and show that this formulation has great potential as an intermediate representation in the context of building facade reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blender. http://www.blender.org

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  3. Chauve, A.L., Labatut, P., Pons, J.P.: Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. In: Proceedings of CVPR, pp. 1261–1268 (2010)

    Google Scholar 

  4. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: Proceedings of ACM SIGGRAPH 2004 Papers, pp. 905–914 (2004)

    Google Scholar 

  5. Cornelis, N., Leibe, B., Cornelis, K., Gool, L.: 3D urban scene modeling integrating recognition and reconstruction. Int. J. Comput. Vis. 78(2), 121–141 (2007)

    Google Scholar 

  6. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Manhattan-world stereo. In: Proceedings of CVPR, pp. 1422–1429 (2009)

    Google Scholar 

  7. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: Proceedings of ICCV, pp. 80–87 (2009)

    Google Scholar 

  8. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  9. von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a Line Segment Detector. Image Process. On Line 2, 35–55 (2012)

    Article  Google Scholar 

  10. Ikehata, S., Yang, H., Furukawa, Y.: Structured indoor modeling. In: Proceedings of ICCV, pp. 1323–1331 (2015)

    Google Scholar 

  11. Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. Int. J. Comput. Vis. 97, 123–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFS with Gaussian edge potentials. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 109–117. Curran Associates Inc. (2011)

    Google Scholar 

  13. Martinovic, A., Knopp, J., Riemenschneider, H., Van Gool, L.: 3D all the way: semantic segmentation of urban scenes from start to end in 3D. In: Proceedings of CVPR, pp. 4456–4465 (2015)

    Google Scholar 

  14. Sinha, S.N., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: Proceedings of ICCV, pp. 1881–1888 (2009)

    Google Scholar 

  15. Strecha, C., von Hansen, W., Gool, L.J.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proceedings of CVPR (2008)

    Google Scholar 

  16. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Parsing facades with shape grammars and reinforcement learning. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1744–1756 (2013)

    Article  Google Scholar 

  17. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing of 3D reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 836–850. Springer, Heidelberg (2014)

    Google Scholar 

  18. Werner, T., Zisserman, A.: Model selection for automated architectural reconstruction from multiple views. In: Proceedings of the British Machine Vision Conference, pp. 53–62 (2002)

    Google Scholar 

  19. Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based street-side city modeling. In: ACM SIGGRAPH Asia 2009 Papers, pp. 114:1–114:12 (2009)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by a grant (HE 2459/21-1) from the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ley .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1141 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ley, A., Hellwich, O. (2016). Depth Map Based Facade Abstraction from Noisy Multi-View Stereo Point Clouds. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics