Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simple Random Sampling Estimation of the Number of Local Optima

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

We evaluate the performance of estimating the number of local optima by estimating their proportion in the search space using simple random sampling (SRS). The performance of this method is compared against that of the jackknife method. The methods are used to estimate the number of optima in two landscapes of random instances of some combinatorial optimisation problems. SRS provides a cheap, unbiased and accurate estimate when the proportion is not exceedingly small. We discuss choices of confidence interval in the case of extremely small proportion. In such cases, the method more likely provides an upper bound to the number of optima and can be combined with other methods to obtain a better lower bound. We suggest that SRS should be the first choice for estimating the number of optima when no prior information is available about the landscape under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. Am. Statistician 52(2), 119–126 (1998)

    MathSciNet  Google Scholar 

  2. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 101–117 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Burnham, K.P., Overton, W.S.: Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65(3), 625–633 (1978)

    Article  MATH  Google Scholar 

  4. Caruana, R., Mullin, M.: Estimating the number of local minima in big, nasty search spaces. In: Proceedings of IJCAI-1999 Workshop on Statistical Machine Learning for Large-Scale Optimization (1999)

    Google Scholar 

  5. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eremeev, A.V., Reeves, C.R.: Non-parametric estimation of properties of combinatorial landscapes. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 31–40. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Ferreira, F.F., Fontanari, J.F.: Probabilistic analysis of the number partitioning problem. J. Phys. A: Math. Gen. 31(15), 3417 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garnier, J., Kallel, L.: How to detect all maxima of a function. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 343–370. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Garnier, J., Kallel, L.: Efficiency of local search with multiple local optima. SIAM J. Discret. Math. 15(1), 122–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldman, B.W., Punch, W.F.: Hyperplane elimination for quickly enumerating local optima. In: Chicano, F., et al. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 154–169. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  11. Grundel, D.A., Krokhmal, P.A., Oliveira, C.A.S., Pardalos, P.M.: On the number of local minima for the multidimensional assignment problem. J. Comb. Optim. 13(1), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hernando, L., Mendiburu, A., Lozano, J.A.: An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol. Comput. 21(4), 625–658 (2013)

    Article  Google Scholar 

  13. Mathias, K.E., Whitley, L.D.: Transforming the search space with gray coding. In: IEEE WCCI, pp. 513–518, vol. 1 (1994)

    Google Scholar 

  14. Pires, A.M., Amado, C.: Interval estimators for a binomial proportion: comparison of twenty methods. REVSTAT-Stat. J. 6(2), 165–197 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Prügel-Bennett, A., Tayarani-N, M.-H.: Maximum satisfiability: anatomy of the fitness landscape for a hard combinatorial optimization problem. IEEE Trans. Evol. Comput. 16(3), 319–338 (2012)

    Article  Google Scholar 

  16. Reeves, C.R.: Direct statistical estimation of GA landscape properties. Found. Genet. Algorithms 6, 91–107 (2001)

    Article  MATH  Google Scholar 

  17. Reeves, C.R., Eremeev, A.V.: Statistical analysis of local search landscapes. J. Oper. Res. Soc. 55(7), 687–693 (2004)

    Article  MATH  Google Scholar 

  18. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comments Theor. Biol. 8(4–5), 389–431 (2002)

    Google Scholar 

  19. Tayarani-N, M.-H., Prügel-Bennett, A.: On the landscape of combinatorial optimization problems. IEEE Trans. Evol. Comput. 18(3), 420–434 (2014)

    Article  Google Scholar 

  20. Tayarani-N, M.-H., Prügel-Bennett, A.: Quadratic assignment problem: a landscape analysis. Evol. Intell. 8(4), 165–184 (2015)

    Article  Google Scholar 

  21. Tovey, C.A.: Hill climbing with multiple local optima. SIAM J. Algebraic Discrete Methods 6(3), 384–393 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Triola, M.F.: Elementary Statistics, 12th edn. Pearson, Upper Saddle River (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khulood Alyahya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Alyahya, K., Rowe, J.E. (2016). Simple Random Sampling Estimation of the Number of Local Optima. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics