Abstract
A number of weight vector-based algorithms have been proposed for many-objective optimization using the framework of MOEA/D (multi-objective evolutionary algorithm based on decomposition). Those algorithms are characterized by the use of uniformly distributed normalized weight vectors, which are also referred to as reference vectors, reference lines and search directions. Their common idea is to minimize the distance to the ideal point (i.e., convergence) and the distance to the reference line (i.e., uniformity). Each algorithm has its own mechanism for striking a convergence-uniformity balance. In the original MOEA/D with the PBI (penalty-based boundary intersection) function, this balance is handled by a penalty parameter. In this paper, we first discuss why an appropriate specification of the penalty parameter is difficult. Next we suggest a desired shape of contour lines of a scalarizing function in MOEA/D. Then we propose two ideas for modifying the PBI function. The proposed ideas generate piecewise linear and nonlinear contour lines. Finally we examine the effectiveness of the proposed ideas on the performance of MOEA/D for many-objective test problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19, 445–460 (2015)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. (in press). doi:10.1109/TEVC.2016.2519378
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE CEC 2002, pp. 825–830
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10, 477–506 (2006)
Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multi-objective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19, 264–283 (2015)
Ishibuchi, H., Doi, K., Nojima, Y.: Characteristics of many-objective test problems and penalty parameter specification in MOEA/D. In: Proceedings of IEEE CEC 2016, pp. 1115–1122 (2016)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of IEEE CEC 2008, pp. 2424–2431 (2008)
Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 13 (2015)
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19, 694–716 (2015)
Wang, R., Zhang, Q., Zhang, T.: Decomposition based algorithms using pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. (in press). 10.1109/TEVC.2016.2521175
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Ishibuchi, H., Doi, K., Nojima, Y. (2016). Use of Piecewise Linear and Nonlinear Scalarizing Functions in MOEA/D. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-45823-6_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45822-9
Online ISBN: 978-3-319-45823-6
eBook Packages: Computer ScienceComputer Science (R0)