Abstract
We discuss the video recommendation for smart TV, an increasingly popular media service that provides online videos by TV sets. We propose an effective video recommendation model for smart TV service (RSTV) based on the developed Latent Dirichlet allocation(LDA) to make personalized top-k video recommendation. In addition, we present proper solutions for some critical problems of the smart TV recommender system, such as sparsity problem and contextual computing. Our analysis is conducted using a real world dataset gathered from Hisense smart TV platform, JuHaoKan Video-on-Demand dataset(JHKVoD), which is an implicit watch-log dataset collecting sets of videos watched by each user with their corresponding timestamps. We fully portray our dataset in many respects, and provide details on the experimentation and evaluation framework. Result shows that RSTV performs better comparing to many other baselines. We analyse the influence of some of the parameters as well as the contextual granularity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 301–304. ACM, New York (2011)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 93–104. Springer, Heidelberg (2006)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272 (2008)
Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N., Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–86. ACM (2010)
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)
Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. In: ACM Conference on Recommender Systems, pp. 265–268 (2009)
Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning, pp. 880–887. ACM (2008)
Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems, vol. 20 (2008)
Verstrepen, K., Goethals, B.: Top-N recommendation for shared accounts. In: ACM Conference on Recommender Systems, pp. 59–66 (2015)
Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1445–1456 (2013)
Zheng, Y., Burke, R., Mobasher, B.: Splitting approaches for context-aware recommendation: an empirical study. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 274–279. ACM (2014)
Zheng, Y., Mobasher, B., Burke, R., CSLIM: contextual SLIM recommendation algorithms. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 301–304. ACM (2014)
Zheng, Y., Mobasher, B., Burke, R., Carskit: a java-based context-aware recommendation engine. In: IEEE International Conference on Data Mining Workshop, pp. 1668–1671 (2015)
Acknowledgements
This work was supported by National Key Laboratory, Hisense Co., Ltd., and Natural Science Foundation of China (61272240, 71402083).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, P., Ma, J., Wang, Y., Ma, L., Huang, S. (2016). A Context-Aware Method for Top-k Recommendation in Smart TV. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds) Web Technologies and Applications. APWeb 2016. Lecture Notes in Computer Science(), vol 9932. Springer, Cham. https://doi.org/10.1007/978-3-319-45817-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-45817-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45816-8
Online ISBN: 978-3-319-45817-5
eBook Packages: Computer ScienceComputer Science (R0)