Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transactional Memory for Algebraic Multigrid Smoothers

  • Conference paper
  • First Online:
OpenMP: Memory, Devices, and Tasks (IWOMP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9903))

Included in the following conference series:

  • 1103 Accesses

Abstract

This paper extends our early investigations in which we compared transactional memory to traditional OpenMP synchronization mechanisms [7, 8]. We study similar issues for algebraic multigrid (AMG) smoothers in hypre [16], a mature and widely used production-quality linear solver library. We compare the transactional version of the Gauss-Seidel AMG smoother to an omp critical version and the default hybrid Gauss-Seidel smoother, as well as the \(l_1\) variations of both Gauss-Seidel and Jacobi smoothers. Importantly, we present results for real-life 2-D and 3-D problems discretized by the finite element method that demonstrate the TM option can outperform the existing methods, often by orders of magnitude, in terms of the recently introduced performance measure of run time per quality.

The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelkhalek, A., Bilas, A.: Parallelization and performance of interactive multiplayer game servers. In: IPDPS (2004)

    Google Scholar 

  2. Ansari, M., Kotselidis, C., Jarvis, K., Lujan, M., Kirkham, C.: Watson, I.: Lee-TM: a nontrivial benchmark for transactional memory. In: ICA3PP (2008)

    Google Scholar 

  3. Bae, H., Cownie, J., Klemm, M., Terboven, C.: A user-guided locking API for the OpenMP* application program interface. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 173–186. Springer, Heidelberg (2014)

    Google Scholar 

  4. Baek, W., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The OpenTM transactional application programming interface. In: PACT, pp. 376–387 (2007)

    Google Scholar 

  5. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Multigrid smoothers for ultraparallel computing. SIAM J. Sci. Comput. 33, 2864–2887 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bihari, B.L.: Applicability of transactional memory to modern codes. In: ICNAAM, pp. 1764–1767. APS, Rodos, Greece (2010)

    Google Scholar 

  7. Bihari, Barna L., Bae, Hansang, Cownie, James, Klemm, Michael, Terboven, Christian, Diachin, Lori: On the algorithmic aspects of using openmp synchronization mechanisms II: user-guided speculative locks. In: Terboven, C., et al. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 133–148. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24595-9_10

    Chapter  Google Scholar 

  8. Bihari, B.L., Wong, M., de Supinski, B.R., Diachin, L.: On the algorithmic aspects of using OpenMP synchronization mechanisms: the effects of transactional memory. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 115–129. Springer, Heidelberg (2014)

    Google Scholar 

  9. Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A case for including transactions in OpenMP II: hardware transactional memory. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 44–58. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. De Sterck, H., Falgout, R.D., Nolting, J.W., Yang, U.M.: Distance-two interpolation for parallel algebraic multigrid. Numer. Linear Algebra Appl. 15, 115–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27, 1019–1039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Falgout, R.D., Jones, J.E., Yang, U.M.: Pursuing scalability for hypre’s conceptual interfaces. ACM Trans. Math. Softw. 31, 326–350 (2005)

    Article  MATH  Google Scholar 

  13. Gajinov, V., Zyulkyarov, F., Unsal, O.S., Cristal, A., Ayguade, E., Harris, T., Valero, M.: QuakeTM: parallelizing a complex sequential application using transactional memory. In: ICS, pp. 126–135 (2009)

    Google Scholar 

  14. Transactional Memory Specification Drafting Group. Transactional language constructs for C++, May 2014. https://sites.google.com/site/tmfor+/

  15. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: a benchmark for software transactional memory. In: EuroSys, pp. 315–324 (2007)

    Google Scholar 

  16. hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/

  17. Kang, S., Bader, D.A.: An efficient transactional memory algorithm for computing minimum spanning forest of sparse graphs. In: PPoPP, pp. 15–24 (2009)

    Google Scholar 

  18. Kestor, G., Stipic, S., Unsal, O., Cristal, A., Valero, M.: RMS-TM: a transactional memory benchmark for recognition, mining and synthesis applications. In: Proceedings of 4th ACM SIGPLAN Workshop on Transactional Computing TRANSACT (2009)

    Google Scholar 

  19. Luchangco, V., Wong, M.: Transactional Memory Support for C++, February 2014. http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2014/n3919.pdf

  20. Lupei, D., Simion, B., Pinto, D., Misler, M., Burcea, M., Krick, W., Amza, C.C.: Transactional memory support for scalable and transparent parallelization of multiplayer games. In: EuroSys, pp. 41–54 (2010)

    Google Scholar 

  21. MFEM: Modular parallel finite element methods library. http://mfem.googlecode.com

  22. Milovanović, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E., Labarta, J., Valero, M.: Transactional memory and OpenMP. In: Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 37–53. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transactional applications for multi-processing. In: IISWC, pp. 315–324 (2008)

    Google Scholar 

  24. Pankratius, V., Adl-Tabatabai, A.: A study of transactional memory vs. locks in practice. In: SPAA, pp. 43–52 (2011)

    Google Scholar 

  25. Rossbach, C.J., Hofmann, O.S., Witchel, W.: Is transactional programming actually easier?. In: PPoPP, pp. 47–56 (2010)

    Google Scholar 

  26. Schindewolf, M., Gyllenhaal, J., Bihari, B.L., Wang, A., Schulz, M., Karl, W.: What scientific applications can benefit from hardware transacional memory?. In: SC12 (2012)

    Google Scholar 

  27. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Delaunay triangulation with transactions and barriers. In: IISWC (2007)

    Google Scholar 

  28. Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C., Schüller, A. (eds.) Multigrid, pp. 413–528 (2001)

    Google Scholar 

  29. Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J.N., Barton, C., Silvera, R., MIchael, M.: Evaluation of blue gene/Q hardware support for transactional memories. In: PACT (2012)

    Google Scholar 

  30. Wong, M., Ayguadé, E., Gottschlich, J., Luchangco, V., de Supinski, B.R., Bihari, B., other members of the WG21 SG5 Transactional Memory Sub-Group: Towards Transactional Memory for OpenMP. In: DeRose, L., Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 130–145. Springer, Heidelberg (2014)

    Google Scholar 

  31. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.: A case for including transactions in OpenMP. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 149–160. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Wong, M., Gottschlich, J.: SG5: Software Transactional Memory (TM) Status Report. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3422.pdf, September 2012

  33. Yoo, R., Hughes, C., Lai, K., Rajwar, R.: Performance evaluation of Intel transactional synhcornization extensions for high-performance computing. In: SC13 (2013)

    Google Scholar 

  34. Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguade, E., Harris, T., Valero, M., Quake, A.: Using transactional memory in an interactive multiplayer game server. In: PPoPP, pp. 25–34 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their constructive comments. We are also grafetul to Lori Diachin of LLNL for the many discussions and ideas on this subject matter and for her continuing support of this research. Finally, we thank Tzanio Kolev of LLNL for his help in generating the relevant matrices using MFEM.

This article (LLNL-PROC-528852) has been authored in part by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barna L. Bihari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bihari, B.L., Yang, U.M., Wong, M., de Supinski, B.R. (2016). Transactional Memory for Algebraic Multigrid Smoothers. In: Maruyama, N., de Supinski, B., Wahib, M. (eds) OpenMP: Memory, Devices, and Tasks. IWOMP 2016. Lecture Notes in Computer Science(), vol 9903. Springer, Cham. https://doi.org/10.1007/978-3-319-45550-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45550-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45549-5

  • Online ISBN: 978-3-319-45550-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics