Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9876))

Included in the following conference series:

Abstract

Traffic has become more complex in recent years and therefore the expectations that are placed on automobiles have also risen sharply. Support for drivers and the protection of the occupants of vehicles and other persons involved in road traffic have become essential. Rapid technical developments and innovative advances in recent years have enabled the development of plenty of Advanced Driver Assistance Systems that are based on different working principles such as radar, lidar or camera techniques. Some systems only warn the drivers via a visual, audible or haptical signal of a danger. Other systems are used to actively engage in the control of a vehicle in emergency situations. Although technical development is already quite mature, there are still many development opportunities for improving road safety. The further development of current applications and the creation of new applications that are based on sensor fusion are essential for the future. A short summary of capabilities of ADAS systems and selected ADAS modules was presented in this paper. The review was selected toward the future perspective of sensors fusion applied on the autonomous mobile platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Winner, H., Hakuli, S., Wolf, G.: Handbuch Fahrerassistenzsysteme. Spriger Vieweg, Wiesbaden (2012)

    Book  Google Scholar 

  2. Brookhuis, K.A., de Waard, D., Janssen, W.H.: Behavioural impacts of Advanced Driver Assistance Systems–an overview. TNO Human Factors Soesterberg; The Netherlands

    Google Scholar 

  3. Piao, J., McDonald, M.: Advanced driver assistance systems from autonomous to cooperative approach. Trans. Rev. 28, 659–684 (2008)

    Article  Google Scholar 

  4. Schneider, J.H.: Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fakultät für Elektrotechnik und Informationstechnik, TU Chemnitz (2009)

    Google Scholar 

  5. Bertozzi, M., Broggi, A., Carletti, M., Fascioli, A., Graf, T., Grisleri, P., Meinecke, M.: IR pedestrian detection for advanced driver assistance systems. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 582–590. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Continental Automotive, ‘Advanced Driver Assistance Systems’. http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/chassis_safety/adas/

  7. Boodlal, L., Chiang, K.-H.: Study of the Impact of a Telematics System on Safe and Fuel-efficient Driving in Trucks. U.S. Department of Transportation Federal Motor Carrier Safety Administration Office of Analysis, Research and Technology (2014)

    Google Scholar 

  8. Keller, C.G., Dang, T., Fritz, H., Joos, A., Rabe, C., Gavrila, D.M.: IEEE Xplore abstract - active pedestrian safety by automatic braking and evasive steering. IEEE Trans. Intell. Transp. Syst. 12, 1292–1304 (2011)

    Article  Google Scholar 

  9. Tewolde, G.S.: Sensor and network technology for intelligent transportation systems. Presented at the May (2012)

    Google Scholar 

  10. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Trans. Syst. Mag. 6, 6–22 (2014)

    Article  Google Scholar 

  11. Vollrath, M., Briest, S., Schiessl, C., Drewes, K., Becker, U.: Ableitung von Anforderungen an Fahrerassistenzsysteme aus Sicht der Verkehrssicherheit. Berichte der Bundesanstalt für Straßenwesen. Bergisch Gladbach: Wirtschaftsverlag NW (2006)

    Google Scholar 

  12. Fildes, B., Keall, M., Thomas, P., Parkkari, K., Pennisi, L., Tingvall, C.: Evaluation of the benefits of vehicle safety technology: The MUNDS study. Accid. Anal. Prev. 55, 274–281 (2013)

    Article  Google Scholar 

  13. David, K., Flach, A.: CAR-2-X and pedestrian safety. IEEE Veh. Technol. Mag. 5, 70–76 (2010)

    Article  Google Scholar 

  14. Horter, M.H., Stiller, C., Koelen, C.: A hardware and software framework for automotive intelligent lighting. Presented at the June (2009)

    Google Scholar 

  15. Hegeman, G., Brookhuis, K., Hoogendoorn, S.: Opportunities of advanced driver assistance systems towards overtaking. Eur. J. Trans. Infrastruct. Res. EJTIR 5(4), 281 (2005)

    Google Scholar 

  16. Lu, M., Wevers, K., Heijden, R.V.D.: Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Trans. Planning Technol. 28, 167–187 (2005)

    Article  Google Scholar 

  17. NXP - Automotive Radar Millimeter-Wave Technology. http://www.nxp.com/pages/automotive-radar-millimeter-wave-technology:AUTRMWT

  18. TDA2x - Texas Instruments Wiki. http://processors.wiki.ti.com/index.php/TDA2x

  19. Bosch Mobility Solutions. http://www.bosch-mobility-solutions.com/en/

  20. AutoUniMo: FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207). http://autounimo.aei.polsl.pl/

  21. Continental Industrial Sensors-Willkommen bei Industrial Sensors. http://www.conti-online.com/www/industrial_sensors_de_de/

  22. Kaempchen, N., Dietmayer, K.C.J.: Fusion of laserscanner and video for ADAS. IEEE Trans. Intell. Transp. Syst. TITS 16(5), 1–12 (2015)

    Article  Google Scholar 

  23. Błachuta, M., Czyba, R., Janusz, W., Szafrański, G.: Data fusion algorithm for the altitude and vertical speed estimation of the VTOL platform. J. Intell. Rob. Syst. 74, 413–420 (2014)

    Article  Google Scholar 

  24. Budzan, S., Kasprzyk, J.: Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications. Opt. Lasers Eng. 77, 230–240 (2016)

    Article  Google Scholar 

  25. Sandblom, F., Sorstedt, J.: Sensor data fusion for multiple configurations. In: Presented at the June (2014)

    Google Scholar 

  26. Grzechca, D., Wrobel, T., Bielecki, P.: Indoor location and idetification of objects with video survillance system and WiFi module. In: Presented at the September (2014)

    Google Scholar 

  27. Tokarz, K., Czekalski, P., Sieczkowski, W.: Integration of ultrasonic and inertial methods in indoor navigation system. Theor. Appl. Inform. 26, 107–117 (2015)

    Google Scholar 

  28. Pamuła, D., Ziębiński, A.: Securing video stream captured in real time. Przegląd Elektrotechniczny. R. 86(9), 167–169 (2010)

    Google Scholar 

  29. Ziebinski, A., Swierc, S.: Soft core processor generated based on the machine code of the application. J. Circ. Syst. Comput. 25, 1650029 (2016)

    Article  Google Scholar 

  30. Behere, S., Törngren, M.: A functional architecture for autonomous driving. In: Presented at the Proceedings of the First International Workshop on Automotive Software Architecture (2015)

    Google Scholar 

  31. Cupek, R., Ziebinski, A., Franek, M.: FPGA based OPC UA embedded industrial data server implementation. J. Circ. Syst. Comp. 22, 18 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union through the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207) and research work financed from funds for science for years: 2016-2017 allocated to an international co-financed project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ziebinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ziebinski, A., Cupek, R., Erdogan, H., Waechter, S. (2016). A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45246-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45245-6

  • Online ISBN: 978-3-319-45246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics