Nothing Special   »   [go: up one dir, main page]

Skip to main content

How Teachers Use Data to Help Students Learn: Contextual Inquiry for the Design of a Dashboard

  • Conference paper
  • First Online:
Adaptive and Adaptable Learning (EC-TEL 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9891))

Included in the following conference series:

Abstract

Although learning with Intelligent Tutoring Systems (ITS) has been well studied, little research has investigated what role teachers can play, if empowered with data. Many ITSs provide student performance reports, but they may not be designed to serve teachers’ needs well, which is important for a well-designed dashboard. We investigated what student data is most helpful to teachers and how they use data to adjust and individualize instruction. Specifically, we conducted Contextual Inquiry interviews with teachers and used Interpretation Sessions and Affinity Diagramming to analyze the data. We found that teachers generate data on students’ concept mastery, misconceptions and errors, and utilize data provided by ITSs and other software. Teachers use this data to drive instruction and remediate issues on an individual and class level. Our study uncovers how data can support teachers in helping students learn and provides a solid foundation and recommendations for designing a teacher’s dashboard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, T.D., Evans, M.A.: Cross-disciplinary participatory & contextual design research: creating a teacher dashboard application. Interact. Des. Archit. J. 19, 63–76 (2013)

    Google Scholar 

  2. Aleven, V., McLaren, B.M., Sewall, J., van Velsen, M., Popsecu, O., Demi, S., Ringenberg, M., Koedinger, K.R.: Example-tracing tutors: Intelligent tutor development for non-programmers. Int. J. Artif. Intell. Educ. 26, 224–269 (2016)

    Article  Google Scholar 

  3. Ali, L., Hatala, M., Gasevic, D., Jovanovic, J.: A qualitative evaluation of evolution of a learning analytics tool. Comput. Educ. 58(1), 470–489 (2012)

    Article  Google Scholar 

  4. van Alphen, E., Bakker, S.: Lernanto: an ambient display to support differentiated instruction. In: Proceedings of the CSCL 2015 Conference on Computer Supported Collaborative Learning, pp. 759–760 (2015)

    Google Scholar 

  5. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: lessons learned. J. Learn. Sci. 4(2), 167–207 (1995)

    Article  Google Scholar 

  6. Arnold, K.E., Pistilli, M.D.: Course signals at Purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 267–270. ACM (2012)

    Google Scholar 

  7. Bakharia, A., Corrin, L., de Barba, P., Kennedy, G., Gasevic, D., Mulder, R., Williams, D., Dawson, S., Lockyer, L.: A conceptual framework linking learning design with learning analytics. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp. 329–338 (2016)

    Google Scholar 

  8. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  9. Bull, S., Kay, J.: Open learner models. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 301–322. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Carnegie Learning. https://www.carnegielearning.com/

  11. Hamilton, L., Halverson, R., Jackson, S.S., Mandinach, E., Supovitz, J.A., Wayman, J.C.: Using student achievement data to support instructional decision making, IES Practice Guide, NCEE 2009-4067, National Center for Education Evaluation and Regional Assistance (2009)

    Google Scholar 

  12. Heffernan, N.T., Heffernan, C.L.: The ASSISTments ecosystem: building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. Int. J. Artif. Intell. Educ. 24(4), 470–497 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kamin, S., Capitanu, B., Twidale, M., Peiper, C.: A teacher’s dashboard for a high school algebra class. In: Reed, R.H., Berque, D.A., Prey, J.C. (eds.) The Impact of Tablet PCs and Pen-based Technology on Education: Evidence and Outcomes, pp. 63–72. Purdue University Press, West Lafayette (2008)

    Google Scholar 

  14. Kelly, K., Heffernan, N., Heffernan, C., Goldman, S., Pellegrino, J., Soffer Goldstein, D.: Estimating the effect of web-based homework. In: Lane, H., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 824–827. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Kulik, C.-L.C., Kulik, J.A., Bangert-Drowns, R.L.: Effectiveness of mastery learning programs: a meta-analysis. Rev. Educ. Res. 60(2), 265–299 (1990)

    Article  Google Scholar 

  16. Kulik, J.A., Fletcher, J.D.: Effectiveness of intelligent tutoring systems: a meta-analytic review. Rev. Educ. Res. 86(1), 42–78 (2015)

    Google Scholar 

  17. Long, Y., Aleven, V.: Mastery-oriented shared student/system control over problem selection in a linear equation tutor. In: Micarelli, A., Stamper, J., Panourgia, K., Krouwel, M.R. (eds.) ITS 2016. LNCS, vol. 9684, pp. 90–100. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39583-8_9

    Chapter  Google Scholar 

  18. Lovett, M., Meyer, O., Thille, C.: The open learning initiative: measuring the effectiveness of the OLI statistics course in accelerating student learning. J. Interact. Media Educ. 2008(1), Art. 13 (2008)

    Google Scholar 

  19. Ma, W., Adesope, O.O., Nesbit, J.C., Liu, Q.: Intelligent tutoring systems and learning outcomes: a meta-analysis. J. Educ. Psychol. 106(4), 901–918 (2014)

    Article  Google Scholar 

  20. Maldonado, R.M., Kay, J., Yacef, K., Schwendimann, B.: An interactive teacher’s dashboard for monitoring groups in a multi-tabletop learning environment. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 482–492. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Mazza, R., Dimitrova, V.: CourseVis: a graphical student monitoring tool for supporting instructors in web-based distance courses. Int. J. Hum. Comput. Stud. 65(2), 125–139 (2007)

    Article  Google Scholar 

  22. McLaren, B.M., Scheuer, O., Miksatko, J.: Supporting collaborative learning and e-discussions using artificial intelligence techniques. Int. J. Artif. Intell. Educ. 20(1), 1–46 (2010)

    Google Scholar 

  23. Steenbergen-Hu, S., Cooper, H.: A meta-analysis of the effectiveness of intelligent tutoring systems on K–12 students’ mathematical learning. J. Educ. Psychol. 105(4), 970–987 (2013)

    Article  Google Scholar 

  24. Steenbergen-Hu, S., Cooper, H.: A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. J. Educ. Psychol. 106(2), 331–347 (2014)

    Article  Google Scholar 

  25. van Leeuwen, A., Janssen, J., Erkens, G., Brekelmans, M.: Supporting teachers in guiding collaborating students: effects of learning analytics in CSCL. Comput. Educ. 79, 28–39 (2014)

    Article  Google Scholar 

  26. VanLehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3), 227–265 (2006)

    Google Scholar 

  27. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)

    Article  Google Scholar 

  28. Waalkens, M., Aleven, V., Taatgen, N.: Does supporting multiple student strategies lead to greater learning and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems. Comput. Educ. 60(1), 159–171 (2013)

    Article  Google Scholar 

  29. Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning. Morgan Kauffman, Burlington (2010)

    Google Scholar 

Download references

Acknowledgments

We thank Gail Kusbit, Carnegie Learning, Jae-Won Kim, and the teachers we interviewed for their help with this project. NSF Award #1530726 supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françeska Xhakaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Xhakaj, F., Aleven, V., McLaren, B.M. (2016). How Teachers Use Data to Help Students Learn: Contextual Inquiry for the Design of a Dashboard. In: Verbert, K., Sharples, M., Klobučar, T. (eds) Adaptive and Adaptable Learning. EC-TEL 2016. Lecture Notes in Computer Science(), vol 9891. Springer, Cham. https://doi.org/10.1007/978-3-319-45153-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45153-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45152-7

  • Online ISBN: 978-3-319-45153-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics