Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tightening McCormick Relaxations for Nonlinear Programs via Dynamic Multivariate Partitioning

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

In this work, we propose a two-stage approach to strengthen piecewise McCormick relaxations for mixed-integer nonlinear programs (MINLP) with multi-linear terms. In the first stage, we exploit Constraint Programing (CP) techniques to contract the variable bounds. In the second stage we partition the variables domains using a dynamic multivariate partitioning scheme. Instead of equally partitioning the domains of variables appearing in multi-linear terms, we construct sparser partitions yet tighter relaxations by iteratively partitioning the variable domains in regions of interest. This approach decouples the number of partitions from the size of the variable domains, leads to a significant reduction in computation time, and limits the number of binary variables that are introduced by the partitioning. We demonstrate the performance of our algorithm on well-known benchmark problems from MINLPLIB and discuss the computational benefits of CP-based bound tightening procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This approach is easily extended to multi-linear terms using successive bilinear relaxations as discussed in Sect. 2.1.

  2. 2.

    In the case of higher order monomials, i.e., \(x_i^5\), we apply a reduction of the form \(x_i^2x_i^2x_i \Rightarrow \tilde{x_i}^2x_i \Rightarrow \tilde{\tilde{x_i}}x_i\).

  3. 3.

    In the “blend” instances, there were few binary variables that appeared in most of the bilinear terms. These are the variables chosen for partitioning.

References

  1. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening (2012). https://hal.archives-ouvertes.fr/file/index/docid/935464/filename/377.pdf

  2. Bergamini, M.L., Grossmann, I., Scenna, N., Aguirre, P.: An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput. Chem. Eng. 32(3), 477–493 (2008)

    Article  Google Scholar 

  3. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Global Optim. 47(4), 661–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro, P.M.: Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems. J. Global Optim., 1–20 (2015)

    Google Scholar 

  6. Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng. 72, 300–311 (2015)

    Article  Google Scholar 

  7. Castro, P.M., Grossmann, I.E.: Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J. Global Optim. 59(2–3), 277–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: Strengthening convex relaxations with bound tightening for power network optimization. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 39–57. Springer, Heidelberg (2015)

    Google Scholar 

  9. Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global optimization of bilinear minlp problems with applications to water management problems. Comput. Chem. Eng. 35(3), 446–455 (2011)

    Article  Google Scholar 

  10. Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 59(9), 3276–3295 (2013)

    Article  Google Scholar 

  11. Hasan, M., Karimi, I.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE J. 56(7), 1880–1893 (2010)

    Article  Google Scholar 

  12. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. J. Optim. Theory Appl. 30(1), 127–129 (1980)

    Article  MATH  Google Scholar 

  13. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  14. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)

    Article  Google Scholar 

  15. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)

    Article  Google Scholar 

  16. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)

    Article  Google Scholar 

  19. Mouret, S., Grossmann, I.E., Pestiaux, P.: Tightening the linear relaxation of a mixed integer nonlinear program using constraint programming. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 208–222. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and minlps with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

    Article  Google Scholar 

  21. Sahinidis, N.V.: Baron: a general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial B&B algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4), 457–478 (1999)

    Article  Google Scholar 

  23. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Teles, J.P., Castro, P.M., Matos, H.A.: Univariate parameterization for global optimization of mixed-integer polynomial problems. Eur. J. Oper. Res. 229(3), 613–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wicaksono, D.S., Karimi, I.: Piecewise MILP under-and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the Center for Nonlinear Studies (CNLS) and was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsha Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nagarajan, H., Lu, M., Yamangil, E., Bent, R. (2016). Tightening McCormick Relaxations for Nonlinear Programs via Dynamic Multivariate Partitioning. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics