Abstract
Our work focuses on metric learning between gesture sample signatures using Siamese Neural Networks (SNN), which aims at modeling semantic relations between classes to extract discriminative features. Our contribution is the notion of polar sine which enables a redefinition of the angular problem. Our final proposal improves inertial gesture classification in two challenging test scenarios, with respective average classification rates of \(0.934 \pm 0.011\) and \(0.776 \pm 0.025\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Computations are performed on an Intel\(\copyright \) Core™i7-4800MQ processor at 2.70 GHz.
References
Akl, A., Valaee, S.: Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, & compressive sensing. In: ICASSP (2010)
Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C.: Siamese neural network based similarity metric for inertial gesture classification and rejection. In: AFGR (2015)
Bromley, J., Guyon, I., Lecun, Y., Sackinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: NIPS (1994)
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1, pp. 539–546. IEEE (2005)
Duffner, S., Berlemont, S., Lefebvre, G., Garcia, C.: 3d gesture classification with convolutional neural networks. In: ICASSP, pp. 5432–5436. IEEE (2014)
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)
Lefebvre, G., Berlemont, S., Mamalet, F., Garcia, C.: BLSTM-RNN based 3D gesture classification. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 381–388. Springer, Heidelberg (2013)
Lefebvre, G., Garcia, C.: Learning a bag of features based nonlinear metric for facial similarity. In: AVSS, pp. 238–243. IEEE (2013)
Lerman, G., Whitehouse, J.T.: On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. J. Approx. Theory 156(1), 52–81 (2009)
Pylvänäinen, T.: Accelerometer based gesture recognition using continuous HMMs. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 639–646. Springer, Heidelberg (2005)
Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture recognition with a 3-D accelerometer. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009. LNCS, vol. 5585, pp. 25–38. Springer, Heidelberg (2009)
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification. In: ICPR, pp. 34–39. IEEE (2014)
Yih, W.-T., Toutanova, K., Platt, J.C., Meek, C.: Learning discriminative projections for text similarity measures. In: CoNLL, pp. 247–256. Association for Computational Linguistics (2011)
Zheng, L., Idrissi, K., Garcia, C., Duffner, S., Baskurt, A.: Triangular similarity metric learning for face verification. In: AFGR (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C. (2016). Polar Sine Based Siamese Neural Network for Gesture Recognition. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9887. Springer, Cham. https://doi.org/10.1007/978-3-319-44781-0_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-44781-0_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44780-3
Online ISBN: 978-3-319-44781-0
eBook Packages: Computer ScienceComputer Science (R0)