Nothing Special   »   [go: up one dir, main page]

Skip to main content

Day-ahead PV Power Forecast by Hybrid ANN Compared to the Five Parameters Model Estimated by Particle Filter Algorithm

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9887))

Included in the following conference series:

Abstract

A comparison between the hybrid method (PHANN – Physical Hybrid Artificial Neural Network) and the 5 parameter Physical model, which have been determined by the particle filter algorithm, is presented here. These methods have been employed to perform the day-ahead forecast of the output power of a photovoltaic plant. The aim of this work is to assess the forecast accuracy of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yadav, H.K., Pal, Y., Tripathi, M.M.: Photovoltaic power forecasting methods in smart power grid. In: 2015 Annual IEEE India Conference (INDICON), pp. 1–6, December 2015

    Google Scholar 

  2. Mellit, A., Pavan, A.M.: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at trieste, Italy. Solar Energ. 84(5), 807–821 (2010). http://www.sciencedirect.com/science/article/pii/S0038092X10000782

    Article  Google Scholar 

  3. Reikard, G.: Predicting solar radiation at high resolutions: a comparison of time series forecasts. Solar Energ. 83(3), 342–349 (2009). http://www.sciencedirect.com/science/article/pii/S0038092X08002107

    Article  Google Scholar 

  4. İzgi, E., Öztopal, A., Yerli, B., Kaymak, M.K., Şahin, A.D.: Short–mid-term solar power prediction by using artificial neural networks. Solar Energ. 86(2), 725–733 (2012). http://www.sciencedirect.com/science/article/pii/S0038092X11004245

    Article  Google Scholar 

  5. Shi, J., Lee, W.-J., Liu, Y., Yang, Y., Wang, P.: Forecasting power output of photovoltaic system based on weather classification and support vector machine. In: 2011 IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–6, October 2011

    Google Scholar 

  6. Pedro, H.T., Coimbra, C.F.: Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energ. 86(7), 2017–2028 (2012). http://www.sciencedirect.com/science/article/pii/S0038092X12001429

    Article  Google Scholar 

  7. Monteiro, C., Fernandez-Jimenez, L.A., Ramirez-Rosado, I.J., Muñoz-Jimenez, A., Lara-Santillan, P.M.: Short-term forecasting models for photovoltaic plants: analytical versus soft-computing techniques. Math. Probl. Eng. 2013, 1–9 (2013)

    Article  Google Scholar 

  8. Wang, F., Mi, Z., Su, S., Zhao, H.: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 5(5), 1355 (2012). http://www.mdpi.com/1996-1073/5/5/1355

    Article  Google Scholar 

  9. Yang, H.T., Huang, C.M., Huang, Y.C., Pai, Y.S.: A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Trans. Sustain. Energ. 5(3), 917–926 (2014)

    Article  Google Scholar 

  10. Dolara, A., Leva, S., Manzolini, G.: Comparison of different physical models for PV power output prediction. Solar Energ. 119, 83–99 (2015)

    Article  Google Scholar 

  11. Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., Ogliari, E.: A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies 8(2), 1138–1153 (2015)

    Article  Google Scholar 

  12. IEC, Procedures for Temperature and Irradiance Corrections to Measured IV Characteristics (2010)

    Google Scholar 

  13. Nelson, J.: The Physics of Solar Cells, vol. 1. World Scientific, Singapore (2003)

    Book  Google Scholar 

  14. De Soto, W., Klein, S., Beckman, W.: Improvement and validation of a model for photovoltaic array performance. Solar Energ. 80(1), 78–88 (2006)

    Article  Google Scholar 

  15. Hottel, H.C.: A simple model for estimating the transmittance of direct solar radiation through clear atmospheres. Solar Energ. 18(2), 129–134 (1976)

    Article  Google Scholar 

  16. Doucet, A., De Freitas, N., Gordon, N.: An introduction to sequential monte carlo methods. In: Doucet, A., et al. (eds.) Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, pp. 3–14. Springer, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Ogliari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ogliari, E., Bolzoni, A., Leva, S., Mussetta, M. (2016). Day-ahead PV Power Forecast by Hybrid ANN Compared to the Five Parameters Model Estimated by Particle Filter Algorithm. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9887. Springer, Cham. https://doi.org/10.1007/978-3-319-44781-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44781-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44780-3

  • Online ISBN: 978-3-319-44781-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics