Abstract
We present a new technique for robust secret reconstruction with \(\mathcal {O}(n)\) communication complexity. By applying this technique, we achieve \(\mathcal {O}(n)\) communication complexity per multiplication for a wide class of robust practical Multi-Party Computation (MPC) protocols. In particular our technique applies to robust threshold computationally secure protocols in the case of \(t<n/2\) in the pre-processing model. Previously in the pre-processing model, \(\mathcal {O}(n)\) communication complexity per multiplication was only known in the case of computationally secure non-robust protocols in the dishonest majority setting (i.e. with \(t<n\)) and in the case of perfectly-secure robust protocols with \(t<n/3\). A similar protocol was sketched by Damgård and Nielsen, but no details were given to enable an estimate of the communication complexity. Surprisingly our robust reconstruction protocol applies for both the synchronous and asynchronous settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An MPC protocol is called robust if the honest parties obtain the correct output at the end of the protocol irrespective of the behaviour of the corrupted parties, otherwise it is called non-robust.
- 2.
We stress that we are interested only in the online complexity. Unlike our online phase, our offline phase protocol cannot be executed in a completely asynchronous setting with \(t<n/2\).
References
Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)
Backes, M., Bendun, F., Choudhury, A., Kate, A.: Asynchronous MPC with a strict honest majority using non-equivocation. In: Halldórsson, M.M., Dolev, S. (eds.) PODC, pp. 10–19. ACM (2014)
Baron, J., J., Defrawy, J., Lampkins, J., Ostrovsky, R.: How to withstand mobile virus attacks, revisited. In: Halldórsson, M.M., Dolev, S. (eds.) PODC, pp. 293–302. ACM (2014)
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)
Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)
Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)
Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds) STOC, pp. 52–61. ACM (1993)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Simon, J. (ed.) STOC, pp. 1–10. ACM (1988)
Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. TOCT 6(3), 13:1–13:36 (2014)
Canetti, R.: Studies in secure multiparty computation and applications. Ph.D. thesis, Weizmann Institute, Israel (1995)
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19. ACM (1988)
Choudhury, A., Hirt, M., Patra, A.: Asynchronous multiparty computation with linear communication complexity. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 388–402. Springer, Heidelberg (2013)
Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013)
Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear communication complexity. In: Das, S.K., Krishnaswamy, D., Karkar, S., Korman, A., Kumar, M., Portmann, M., Sastry, S. (eds.) ICDCN, pp. 5:1–5:10. ACM (2015)
Clement, A., Junqueira, F., Kate, A., Rodrigues, R.: On the (limited) power of non-equivocation. In: Kowalski, D., Panconesi, A. (eds.) PODC, pp. 301–308. ACM (2012)
Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC, pp. 160–179 (2009)
Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)
Damgård, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)
Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 163–168. ACM Press (2006)
Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015)
Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: Coan, B.A., Afek, Y. (eds.) PODC, pp. 101–111. ACM (1998)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)
Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482. Springer, Heidelberg (2006)
Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience (extended abstract). In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005)
Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008)
Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006)
Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 549–560. ACM (2013)
Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE Computer Society (1982)
Acknowledgements
This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grants EP/I03126X and EP/M016803, by DARPA and the US Navy under contract #N66001-15-C-4070, and by the Infosys Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Choudhury, A., Orsini, E., Patra, A., Smart, N.P. (2016). Linear Overhead Optimally-Resilient Robust MPC Using Preprocessing. In: Zikas, V., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2016. Lecture Notes in Computer Science(), vol 9841. Springer, Cham. https://doi.org/10.1007/978-3-319-44618-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-44618-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44617-2
Online ISBN: 978-3-319-44618-9
eBook Packages: Computer ScienceComputer Science (R0)